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Abstract

We present some results on the statistical features of certain chaotic dynamical sys-
tems. We shall focus on the existence of physical measures, decay of correlations and
statistical stability.

1. Introduction

Take a mathematical space M and think of its points
as representing physical, biological or some other vari-
ables. Endow this space with a function (rule) f : M 	

which, given any point in M , comes up with another
point in M . The combination is a discrete-time dy-
namical system for which M is the phase space, and
the function gives the evolution law. The orbit (or tra-
jectory) of a given point x ∈M is the sequence of suc-
cessive iterates (fn(x))n, where fn = f ◦ · · · ◦ f (n
times).

In broad terms, one may refer two main goals of Dynam-
ical Systems theory: i) to describe the typical behavior
of trajectories, specially as time goes to infinity, and
ii) to understand how this behavior changes when the
law that governs the system is sightly modified. Even
in cases of simple evolution laws, orbits may have a
rather complicated behavior, which makes its descrip-
tion a very difficult task, specially when the system has
sensitivity to initial conditions: a small change in the
initial state produces large variations in the long term
behavior of the trajectory. A well succeeded strategy
for studying this kind of systems is through a proba-
bilistic viewpoint: if one is not able to predict the fu-
ture configuration of the system, let us try at least to

find out the probability of certain configurations. In
this approach we are particularly interested in physi-
cal measures, which characterize asymptotically, in time
average, a large set of orbits.

Starting with classical results, in this work we present
recent developments on the probabilistic theory of
chaotic dynamical systems, specially about the exis-
tence of physical measures and some of their statistical
features.

2. Physical measures

Let (M,A , µ) be a probability space and f : M → M
be such that f−1(A) ∈ A for each A ∈ A . We say
that f preserves the measure µ, or µ is an f-invariant
measure, if µ(f−1(A)) = µ(A) for all A ∈ A . A direct
consequence of this definition is that {x ∈ M : x ∈ A}
and {x ∈ M : fn(x) ∈ A} have the same µ measure
for every n ∈ N. This means that the probability of
finding a point in a measurable set does not depend on
the moment we are considering. One of the first results
on the probabilistic features of dynamical systems was
obtained by Poincaré for conservative systems, and can
be translated to our context in the following way:

1Work carried out while visiting UFBA, Brazil. Partially supported by CNPq, FCT through CMUP and POCI/MAT/61237/2004.
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Poincaré Recurrence Theorem. Assume that f pre-
serves a probability measure µ. If A is a measurable set,
then for almost every x ∈ A, there are infinitely many
n ∈ N for which fn(x) ∈ A.

The previous result says nothing about the frequency on
which typical orbits visit A, i.e. it gives no information
on

lim
n→∞

#{0 ≤ j < n : f j(x) ∈ A}

n
. (2.1)

Does this limit exist? Where does it converge to? Birk-
hoff Ergodic Theorem gives answers to these questions
and, in fact, much more general conclusions. Before
we state it, let us introduce some important concept
on this subject. Assume that f preserves a measure
µ. We say that f (or µ) is ergodic if µ(A) = 0 or
µ(M \ A) = 0 for any A ∈ A with f−1(A) = A. Ob-
serving that f−1(A) = A implies that f(A) ⊂ A and
f(M \ A) ⊂ M \ A, this means that the space cannot
be decomposed into two significant parts that do not
interact.

Birkhoff Ergodic Theorem. Assume that f pre-
serves a probability measure µ. If ϕ is integrable, then
there is an integrable function ϕ∗ such that for µ almost
every x ∈M

lim
n→∞

1

n

n−1
∑

j=0

ϕ(f j(x)) = ϕ∗(x).

Moreover, ϕ∗(x) =
∫

ϕdµ for µ almost every x ∈ M ,
provided µ is ergodic.

Taking ϕ as the characteristic function of a measurable
set A, we easily deduce that the limit in (2.1) exists
for µ almost every x ∈ M . Furthermore, if µ is er-
godic, then it is precisely µ(A). This means that the
frequency of visits to A coincides with the proportion
that A occupies in the phase space.

The results we have presented so far concern dynam-
ics over a probability measure space with no additional
structure on the underlying phase space M . Frequently
M has a Riemannian manifold structure and a volume
form on it which gives rise to a Lebesgue measure m
on the Borel sets of M . Birkhoff Ergodic Theorem
gives that asymptotic time averages exist for almost
every point, with respect to an invariant measure µ,
and they coincide with the spatial average, provided µ
is ergodic. However, an invariant measure can lack of
physical meaning, in the sense that sets with full µ mea-
sure may have zero Lebesgue measure. This problem
can be overcome by the notion that we present below,
which has been introduced by Sinai, Ruelle and Bowen
in the context of hyperbolic dynamical systems.

An invariant probability measure µ is said to be a phys-
ical measure for f : M → M if for a positive Lebesgue
measure set of points x ∈M

lim
n→+∞

1

n

n−1
∑

j=0

ϕ(f j(x)) =

∫

ϕdµ, (2.2)

for all continuous ϕ : M → R. This means that the
averages of Dirac measures over the orbit of x converge
in the weak* topology to the measure µ. We define the
basin of µ as the set of points x ∈ M for which (2.2)
holds for all continuous ϕ.

It easily follows from Birkhoff Ergodic Theorem that if
µ is an ergodic probability measure which is absolutely
continuous with respect to the Lebesgue measure, i.e. it
does not give positive weight to sets with zero Lebes-
gue measure, then µ is a physical measure. Indeed, if µ
is ergodic, then by Birkhoff Ergodic Theorem its basin
has full µ measure. By absolute continuity, the basin
of µ cannot have zero Lebesgue measure.

3. Low dimensional dynamics

There is no need of great complexity in evolution laws
for which intricate dynamical behavior occurs. To il-
lustrate this, the basic model is the family of quadratic
maps qa(x) = 1 − ax2, where x ∈ [−1, 1] and a ∈ [0, 2]
is a parameter2. In spite of its simple appearance, the
dynamics of these maps presents many remarkable phe-
nomena. From the topological point of view, the situa-
tion is quite well understood in most situations.

Theorem 3.1 ([Ly1], [GS]). There is an open and
dense set of parameters a ∈ [0, 2] for which qa has a
periodic orbit3 attracting Lebesgue almost every point.

In spite of its simple formulation, this remained as
a long term conjecture in one dimensional dynamics.
From a probabilistic point of view, the situation is com-
pletely different. Its richness first became apparent with
the work of Jakobson, where it was shown that a posi-
tive measure set of parameters corresponds to quadratic
maps with chaotic behavior.

Theorem 3.2 ([Ja]). There is a positive Lebesgue mea-
sure set of parameters a ∈ [0, 2] for which qa has an
absolutely continuous ergodic measure µa.

By the considerations at the end of Section 2 we have
that µa is a physical measure. Some extra knowledge on
the properties of µa allows us to show that log |q′a| is µa

2 Here is where the rich part of the dynamics lies. For parameters out of this range or points out of this domain the dynamics is well
understood.

3 The orbit of a given point x is called periodic if some positive iterate of it coincides with x.
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integrable and
∫

log |q′a|dµa > 0. By Birkhoff Ergodic
Theorem

lim
n→∞

n−1
∑

j=0

log |q′a((qj
a(x))| =

∫

log |q′a|dµ,

and so, using the chain rule, we have a positive Lya-
punov exponent at almost every x:

lim
n→∞

log |(qn
a )′(x)| > 0.

The existence of this positive Lyapunov exponent gives
one pervasive feature of chaos: sensitivity to the initial
conditions.

As we have seen, at least two types of distinct behavior
are present on the quadratic family, and they alternate
in a complicate way. Besides these two types, differ-
ent behaviors were shown to exist, including examples
with bad statistics, like absence of a physical measure
or a physical measure concentrated on a hyperbolic re-
peller. Finally Lyubich depicted a nice picture of the
global situation.

Theorem 3.3 ([Ly2]). For Lebesgue almost every a ∈
[0, 2] the map qa has either a periodic attracting orbit
or an absolutely continuous ergodic measure.

Though we have used the absolutely continuous ergodic
measure to obtain a positive Lyapunov exponent, the
existence of this exponent can be deduced directly for
a positive Lebesgue measure subset of parameters. The
big difficulty in carrying this out is that quadratic maps
combine regions of the phase space where the dynamics
expands, together with a critical region where the deriv-
ative becomes arbitrarily small. In [BC1], Benedicks
and Carleson implemented a strategy which enabled
them to prove the existence of a positive Lyapunov ex-
ponent not only for quadratic maps, but also for the
Hénon maps

fa,b : R
2 −→ R

2

(x, y) 7−→ (1 − ax2 + y, bx).

In [He], Hénon proposed this two parameter family as
a model for non-linear two dimensional dynamics. This
can be thought as a simplified discrete-time version of
the Lorenz flow and interpreted as an unfolding of the
quadratic family4. Based on numerical experiments for
a = 1.4 and b = 0.3, Hénon conjectured that this system
should have a strange attractor. It was not at all a pri-
ori clear that the attractor detected experimentally by
Hénon was not a long stable periodic orbit. Benedicks
and Carleson managed to prove that Hénon’s conjecture
was true for small b > 05.

Theorem 3.4 ([BC2]). There is a positive Lebes-
gue measure set BC of parameters such that for each
(a, b) ∈ BC the map f = fa,b has the following proper-
ties:

(1) there is an open set U ⊂ R
2 such that f(U) ⊂ U

and Λ =
⋂∞

n=0
fn(U) attracts the orbit of every

x ∈ U ;

(2) there is z0 ∈ Λ whose orbit is dense on Λ, and
there is c > 0 such that ‖Dfn(z0)(0, 1)‖ ≥ ecn for
all n ≥ 1;

(3) f has a unique physical measure supported on Λ.

The physical measure was obtained by Benedicks and
Young in [BY1]. The second item of the theorem gives
the existence of a positive Lyapunov exponent in a
dense orbit, thus showing that the attractor displays
sensitive dependence to the initial conditions for the
parameters in BC.

4. Non-uniformly expanding maps

As seen in the previous section, for one-dimensional
maps the existence of absolutely continuous invariant
measures is intimately connected with the existence of
a positive Lyapunov exponent. Inspired by the remark-
able progress for the one dimensional case, one presently
aims at obtaining similar conclusions in higher dimen-
sions. The first result we present in this direction is
for uniformly expanding maps. A map f : M → M is
called uniformly expanding if there is σ < 1 such that
‖Df(x)−1‖ < σ for every x ∈M .

Theorem 4.1 ([KS]). Let f : M → M be a C2 uni-
formly expanding map. Then f has a unique ergodic ab-
solutely continuous invariant probability measure whose
basin has full Lebesgue measure.

We are also interested in maps admitting (critical) sets
where the derivative is not an isomorphism or simply
does not exist. We say that C ⊂M is a non-degenerate
critical set if the derivative of f behaves as a power
of the distance close to C . Staying away from techni-
calities, we refer [ABV] for a precise definition of this
concept. Let us just mention that it captures the flavor
of non-flat critical points in dimension one.

Let f : M → M be a local diffeomorphism in M \ C ,
where C is a non-degenerate critical set with zero Le-
besgue measure. We say that f is non-uniformly ex-
panding if the following conditions hold:

4For b = 0 orbits eventually lie on {y = 0} and dynamics can be thought as that of quadratic maps.
5 It remains an interesting open question to know if the chaotic attractor exists for Hénon’s choice of parameters a = 1.4 and b = 0.3.
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(c1) there is λ > 0 such that for Lebesgue almost every
x ∈M

lim sup
n→∞

1

n

n−1
∑

i=0

log ‖Df(f i(x))
−1

‖ < −λ;

(c2) for all ǫ > 0 there is δ > 0 such that for Lebesgue
almost every x ∈M

lim sup
n→+∞

1

n

n−1
∑

j=0

− log distδ(f
j(x),C ) < ǫ.

Condition (c1) allows points where the derivative does
not expand. Expansion is only attained asymptotically
in average for most orbits. We shall refer to (c2) as slow
recurrence to C . It essentially says that generic orbits
do not hit small neighborhoods of the critical set too
frequently.

Theorem 4.2 ([ABV]). Let f : M →M be a C2 non-
uniformly expanding map. There are absolutely con-
tinuous ergodic probability measures µ1, ..., µp whose
basins cover a full Lebesgue measure subset of M .

Uniqueness can be obtained if f is transitive, i.e. with
a dense orbit in M . Uniformly expanding maps are
always transitive.

Condition (c1) assures that the expansion time function
E (x), defined as the minimum N ≥ 1 such that for all
n ≥ N

1

n

n−1
∑

i=0

log ‖Df(f i(x))−1‖ < −λ,

is well defined and finite Lebesgue almost everywhere.

We observe that slow recurrence condition is not needed
in all its strength. Actually, it is enough that it holds
for some sufficiently small ǫ > 0 and δ > 0 conveniently
chosen; see [Al, Remark 3.8]. We fix once and for all
ǫ > 0 and δ > 0 in those conditions. This allows us
to define the recurrence time R(x), as the minimum
N ≥ 1 such that for all n ≥ N

1

n

n−1
∑

i=0

− log distδ(f
j(x),C ) < ǫ,

which is finite Lebesgue almost everywhere. We define
the tail set (at time n) as

Γn =
{

x ∈M : E (x) > n or R(x) > n
}

.

This is the set of points that at time n have not reached
the exponential growth or slow recurrence assured by
(c1) and (c2). Non-uniform expansion guarantees that
the Lebesgue measure of this set converges to zero when

n → ∞. The speed of this convergence plays an im-
portant role in the statistical features of non-uniformly
expanding dynamical system, as we shall see later on.

Next we present a family of maps, introduced by Viana
in [Vi], that has served as a model for many general
results on non-uniformly expanding maps.

Example 4.3 (Viana maps). Let a0 be a parameter con-
veniently chosen and take b : S1 → R a Morse function.
Consider the cylinder transformation f̂ : S1 × R →
S1 × R given by

f̂(s, x) =
(

ĝ(s), q̂(s, x)
)

,

where ĝ is an expanding map of the circle ĝ(s) = ds
(mod Z), for some d ≥ 2, and q̂(s, x) = a(s) − x2 with
a(s) = a0 + αb(s), for small α > 0.

Theorem 4.4 ([Vi]). If f is close to f̂ in the C3

topology, then f is non-uniformly expanding. Moreover,
there is c > 0 such that m(Γn) . e−c

√
n.

Viana maps reveal some new phenomenon if compar-
ing to the family one dimensional quadratic maps: the
non-uniformly expanding behavior holds for an open
set of transformations. Recall that by Theorem 3.1 we
have density of parameters for which the corresponding
quadratic map has a periodic attractor.

5. Mixing rates

There are several possible ways of measuring the
chaoticity of a given dynamical system. One of them
is analyzing its mixing rates. An invariant probability
measure µ is said to be mixing if

µ(f−n(A) ∩B) → µ(A)µ(B), (5.1)

when n → ∞, for any measurable sets A,B. We leave
it as an easy exercise to the reader to show that mixing
implies ergodicity6.

Roughly speaking, mixing indicates that, as long as
sufficiently large iterates are taken, the proportion of
points in B arising from A tends to the proportion that
A occupies in the whole space. In general there is no
specific rate at which the convergence in (5.1) occurs.
However, defining the correlation function of observ-
ables ϕ,ψ : M → R,

Cn(ϕ,ψ)=

∣

∣

∣

∣

∫

(ϕ ◦ fn)ψdµ−

∫

ϕdµ

∫

ψdµ

∣

∣

∣

∣

,

it is sometimes possible to obtain specific rates at which
Cn(ϕ,ψ) decays to zero, provided ϕ and ψ have suffi-
cient regularity. Observe that choosing the observables

6The converse is not true: irrational rotations of the circle are ergodic and not mixing with respect to the length measure, which is
obviously invariant.
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as characteristic functions we get the definition of mix-
ing.

Given ϕ : M → R, consider the random variables ϕ,
ϕ ◦ f , ϕ ◦ f2,. . . . The exponential decay of correlations
tells in particular that ϕ◦fn and ϕ become uncorrelated
exponentially fast as n tends to infinity.

Theorem 5.1 ([BY2]). Hénon maps have exponential
decay of correlations (with respect to the unique physical
measure) for parameters in BC.

A key ingredient in the proof of this result is the exis-
tence of a direction of non-uniform expansion. However,
there is a well localized set of “critical” points where or-
bits suffer setbacks in expansion when they pass near
this set. The decay of correlations takes into account
the set of points approaching in a counterproductive
way the source of non-expansion. The measure of this
set decays exponentially fast to zero.

For non-uniformly expanding maps, a priori we have
no knowledge on the source of “critical” behavior. The
decay of correlations ultimately depends on the speed
that the Lebesgue measure of the tail set converges to
zero, at least for some specific rates.

Theorem 5.2 ([ALP], [Go]). Assume that f : M →M
is a C2 transitive non-uniformly expanding map. If
m(Γn) is summable, then some power of f is mixing
with respect to the (unique) physical measure µ. More-
over, for Hölder continuous ϕ,ψ one has:

(1) if there is γ > 1 for which m(Γn) . n−γ , then
Cn(ϕ,ψ) . n−γ+1;

(2) if there are γ > 0 and 0 < η ≤ 1 for which
m(Γn) . e−γnη

, then there is γ′ > 0 such that
Cn(ϕ,ψ) . e−γ′nη

.

Using Theorem 4.4 we easily deduce that the decay of
correlations for Viana maps has order e−c

√
n at least7.

Let us now give some consequence of the decay of cor-
relations. Starting with the Lebesgue measure m, one
may consider the sequence of push-forwards fn

∗m, for
n ≥ 1, where these measures are defined for each n ≥ 1
as fn

∗m(A) = m(f−n(A)). In many situations (e. g.
uniformly expanding maps) the absolutely continuous
invariant measure is actually equivalent to the Lebesgue
measure m, in such a way that we may take ψ = dm/dµ
in Cn(ϕ,ψ) and, assuming m normalized, we obtain

Cn(ϕ,ψ) =

∣

∣

∣

∣

∫

(ϕ ◦ fn)dm−

∫

ϕdµ

∣

∣

∣

∣

,

Supposing Cn(ϕ,ψ) → 0 as n→ ∞, one has
∫

(ϕ ◦ fn)dm −→

∫

ϕdµ.

This means that fn
∗m converges in the weak* topol-

ogy to µ. Hence, the faster correlations decay, the bet-
ter physical measure are approximated by the push-
forwards of Lebesgue measure.

6. Statistical stability

One is interested in studying the variation of physical
measures in certain classes of dynamical systems. Its
continuous variation points in the direction of stabil-
ity of the dynamical system, at least in terms of the
statistical distribution of orbits for nearby dynamics.

Let F be a family of Ck maps, for some k ≥ 2, from a
manifold M into itself, and consider F endowed with
the Ck topology. Assume that each f ∈ F admits a
unique physical measure µf . We say that F is statisti-
cally stable if

F ∋ f 7−→ µf

is continuous with respect to the weak* topology on the
space of probability measures.

As shown in Theorem 3.4, though highly unstable in
terms of the evolution of its individual orbits, Hénon
attractors at BC parameters are fairly regular in sta-
tistical terms. The next result shows that the statistics
of the these maps does not change dramatically when
one perturbs parameters in BC.

Theorem 6.1 ([ACF]). The family BC is statistically
stable.

The physical measures of Hénon maps at BC para-
meters are supported on attractors with zero bidimen-
sional Lebesgue measure. Consequently, those physical
measures are necessarily singular with respect to the Le-
besgue measure. In cases where the physical measure
is absolutely continuous with respect to the Lebesgue
measure m on the phase space, we may even aim at
strong statistical stability : the map

F ∋ f 7−→
dµf

dm

is continuous with respect to the L1(m) norm in the
space of densities.

The following result holds for families F of non-
uniformly expanding maps. We denote by Γf

n the tail
set associated to f ∈ F .

Theorem 6.2 ([AV],[Al]). Assume that there are C >
0 and γ > 1 such that m(Γf

n) ≤ Cn−γ for all f ∈ F

and n ≥ 1. Then F is strongly statistically stable.

Using Theorem 4.4 we easily deduce that the family of
Viana maps is strongly statistically stable8.

7 It remains an interesting open question to know if the estimate for the measure of the tail set given by Theorem 4.4 is optimal.
8Though not explicitly stated in Theorem 4.4, the rate at which m(Γn) decays to 0 is uniform on the set of Viana maps.
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