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Primeness on modules can be defined by prime elements in a suitable partially ordered
groupoid. Using a product on the lattice of submodules L(M) of a module M defined
in [3] we revise the concept of prime modules in this sense. Those modules M for which
L(M) has no nilpotent elements have been studied by Jirasko and they coincide with
Zelmanowitz’ “weakly compressible” modules. In particular we are interested in repre-
senting weakly compressible modules as a subdirect product of “prime” modules in a
suitable sense. It turns out that any weakly compressible module is a subdirect product
of prime modules (in the sense of Kaplansky). Moreover if M is a self-projective module,
then M is weakly compressible if and only if it is a subdirect product of prime modules
(in the sense of Bican et al.). An application to Hopf actions is given.

Keywords: Prime module; partially ordered groupoid; prime element; weakly
compressible module; retractable module; semiprime endomorphism ring; semiprime
smash product; Hopf algebra action.

1. Introduction

Generalizing ring theoretic notions to modules often creates difficulties when they

are of a multiplicative nature. If no obvious notion of a multiplication in a module

is at hand, one often has to simulate the ring theoretic behavior. However any such

generalization should coincide with the original one when applied to the ring itself.

In the following all rings R will be associative with unit. We will refer to a

unital left R-module simply as “module” if the context is clear. EndR(M) denotes

the ring of R-endomorphisms of a module M and we write endomorphisms on the

opposite side to scalars. AnnR(M) is the annihilator ideal of M in R, i.e. the ideal

consisting of all elements x of R such that xm = 0 for all m ∈M .

The concept of a prime ideal, respectively, of a prime ring, is obviously a mul-

tiplicative notion. When we want to create a notion of primeness of a module M

it is natural to look first to the rings that are attached to M , i.e. R/AnnR(M)
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and EndR(M). Let us briefly characterize when those rings are prime (respectively,

semiprime) in terms of the module M :

Proposition 1.1. Let R and S be rings and M be an (R,S)-bimodule. Assume

that M is a faithful left R-module. Then the following are equivalent:

(a) R is a prime ring.

(b) For all submodules N of M : AnnR(N) = 0 or AnnR(M/N) = 0.

(c) For any (R,S)-subbimodule N of M that is M -generated as an S-module:

AnnR(N) = 0 or AnnR(M/N) = 0.

Proof. (a) ⇒ (b) Straightforward since AnnR(N) AnnR(M/N) ⊆ AnnR(M) = 0.

(b) ⇒ (c) is trivial.

(c) ⇒ (a) Let IJ = 0 for two ideals I, J in R. Then I ⊆ AnnR(JM) = 0 or

J ⊆ AnnR(M/JM) = 0 as JM is a (R,S)-bimodule and M -generated as a right

S-module.

In [19], J. E. Berg and R. Wisbauer called a module M duprime if M ∈ σ[N ]

or M ∈ σ[M/N ] for any submodule N of M . Here σ[X ] is the full subcategory of R-

Mod whose objects are submodules of factor modules of direct sums of copies of X .

Since AnnR(X) ⊆ AnnR(Y ) holds whenever Y ∈ σ[X ] we get by Proposition 1.1(b)

that any duprime module has a prime annihilator.

Proposition 1.1 also applies to determine when the endomorphism ring

S = End(M) of a module M is prime. Recall that the (R,S)-subbimodules of

M are called fully invariant. Note that for a fully invariant submodule N of M

we have AnnS(N) = HomR(M/N,M) and AnnS(M/N) = HomR(M,N). For a

nonzero M -generated R-submodule N we have AnnS(M/N) = HomR(M,N) 6= 0.

Thus applying the Proposition 1.1 to M as an (Sop, Rop)-bimodule we get by

(a) ⇔ (c):

Corollary 1.2. The endomorphism ring of a left R-module M is prime if

and only if HomR(M/N,M) = 0 for all nonzero fully invariant M -generated

submodules N of M .

Several criteria for EndR(M) to be a domain are given by Bae Soon-Sook in [18].

Similar to Proposition 1.1 we can characterize when R is semiprime:

Proposition 1.3. Let R and S be rings and M be an (R,S)-bimodule. Assume

that M is a faithful left R-module. Then the following are equivalent:

(a) R is a semiprime ring.

(b) For all submodules N of M : AnnR(N) ∩ AnnR(M/N) = 0.

(c) For any (R,S)-subbimodule N of M that is M -generated as an S-module:

AnnR(N) ∩ AnnR(M/N) = 0.

Proof. (a) ⇒ (b) Straightforward since for any N ⊆M we have:

(AnnR(N) ∩ AnnR(M/N))2 ⊆ AnnR(N) AnnR(M/N) ⊆ AnnR(M) = 0.
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(b) ⇒ (c) is trivial.

(c) ⇒ (a) Let I2 = 0 for an ideal in R. Then I ⊆ AnnR(IM) ∩ AnnR(M/IM) = 0

as IM is an (R,S)-bimodule that is M -generated as a right S-module.

J. E. Berg and R. Wisbauer called a module M dusemiprime if M ∈ σ[N ⊕

(M/N)] for every submodule N of M . Since AnnR(N ⊕ (M/N)) = AnnR(N) ∩

AnnR(M/N), we get by Proposition 1.3(b) that any dusemiprime module has a

semiprime annihilator.

Interchanging left and right in Proposition 1.3 we also can apply the proposition

to determine when the endomorphism ring of a module is semiprime.

Corollary 1.4. The endomorphism ring of a module M is semiprime if and only

if, for all fully invariant, M -generated submodules N of M, if f ∈ HomR(M,N)

and Nf = 0 then f = 0.

2. Prime Elements in Partially Ordered Groupoids

The concept of a prime ideal of a ring just depends on the multiplication of (left)

ideals in the ring and of the partial order of ideals. This allowed Birkhoff to carry the

notion of prime ideals over to partially ordered sets that admit a multiplication,

as follows. A partially ordered set L is called a partially ordered groupoid

(po-groupoid) if there exists a binary operation ?: L × L → L such that for all

a, b, c ∈ L:

a ≤ b implies a ? c ≤ b ? c and c ? a ≤ c ? b.

If the operation ? is associative, then L is called a po-semigroup and if there exists

an element 1 ∈ L with a ? 1 = a = 1 ? a for all a ∈ L, then L is called integral.

An integral po-semigroup is simply called a po-monoid. If L is a lattice then L is

called a `0-groupoid and if moreover ? distributes over join, i.e. for all a, b, c ∈ L:

a ? (b ∨ c) = (a ? b) ∨ (a ? c) and (b ∨ c) ? a = (b ? a) ∨ (b ? c),

then L is called a lattice ordered groupoid or `-groupoid for short.

A zero element of a po-groupoid L is an element 0 which is the least element

of L with respect to ≤ and a?0 = 0 = 0?a holds for all a ∈ L. An element p ∈ L is

called prime if a? b ≤ p implies a ≤ p or b ≤ p for all a, b ∈ L (see Birkhoff [4], [13]

or [12]). An element s ∈ L is called semiprime if s is the lower bound of some

prime elements {pλ}Λ of L, i.e. ∀λ ∈ Λ: s ≤ pλ and if for some x ∈ L: x ≤ pλ for

all λ then x ≤ s. In case L is a lattice this means s =
∧

pλ. The prime radical

of L is (if it exists) the lower bound of all prime elements of L. A po-groupoid L

with zero 0 is called prime if 0 is a prime element. A po-groupoid L with zero 0 is

called semiprime if 0 is a semiprime element.

In the sequel we want to compare the semiprime condition with the condition

that there are no nonzero nilpotent elements. Since the notion of a nilpotent element
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involves the notion of a power of an element and since a power of an element in

a not necessarily associative groupoid is not well-defined we give the following

definition.

First we review the (recursive) definition of a binary tree. The empty tree

T = ( ) is a binary tree and every expression T = (Tl, Tr) is a binary tree where Tl
and Tr are binary trees. Tl (respectively, Tr) will be called the left (respectively,

right) branch of T . The set of all finite binary trees is denoted by T. The height

of a tree T is defined as 0 if T = ( ) and max(n,m) + 1 if T = (Tl, Tr) where n is

the height of Tl and m is the height of Tr.

Definition 2.1. Let L be a po-groupoid. For every a ∈ L we define the map

µa: T → L by

µa(( )) := a and µa(T ) = µa(Tl) ? µa(Tr) for T = (Tl, Tr).

Then any element in the image of µa is called a power of a.

If L has a zero element 0, then a ∈ L is called nilpotent if 0 is a power of a. If

the only nilpotent element of L is 0 we say that L is reduced.

We will show that under suitable assumptions L is reduced if and only if L

has no nonzero square-zero elements, i.e. no nonzero elements a ∈ L such that

a2 := a ? a = 0.

The full binary tree Fn of height n is defined as follows: F0 = ( ) and

Fn = (Fn−1, Fn−1) for n ≥ 1. The following Lemma can be easily proved using

induction.

Lemma 2.2. Let L be a po-groupoid and a ∈ L such that a2 ≤ a. Then the following

holds:

(1) µa(Fn) ≥ µa(Fm) for all n ≤ m.

(2) µa(T ) ≥ µa(Fn) for all binary trees T of height n.

Proof. (1) follows by induction and the hypothesis.

(2) is clear for n = 0. Assume (2) has been proved for all T of height n for some

n ≥ 0. Let T be of height n + 1 and write T = (Tl, Tr). Let k be the height of Tl
and m be the height of Tr. Then n + 1 = max(k,m) + 1 and so n = max(k,m).

By induction and (1): µa(Tl) ≥ µa(Fk) ≥ µa(Fn) and µa(Tr) ≥ µa(Fm) ≥ µa(Fn).

Hence

µa(T ) = µa(Tl) ? µa(Tr) ≥ µa(Fk) ? µa(Fm) ≥ µa(Fn)2 = µa(Fn+1).

Corollary 2.3. Let L be a po-groupoid with zero and let a be an element of L such

that a2 ≤ a. If a is a nonzero nilpotent element then there exists a nonzero power

b of a such that b2 = 0.
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Proof. Let 0 be a power of a. Then there exists a (non-empty) binary tree T such

that µa(T ) = 0. Choose such a tree T with minimal height, k say. By the Lemma,

µa(T ) ≥ µa(Fk). Since µa(T ) = 0 it follows that µa(Fk−1)
2 = µa(Fk) = 0. Taking

b := µa(Fk−1) gives the element desired. Since the height k is minimal, b 6= 0.

As a corollary we get

Corollary 2.4. Let L be a po-groupoid with zero 0 such that every element a

satisfies a2 ≤ a. Then L is reduced if and only if L has no nonzero square-zero

elements.

In relation to semiprime po-groupoids we can now deduce

Corollary 2.5. A semiprime po-groupoid L whose elements a satisfy a2 ≤ a is

reduced.

Proof. By Corollary 2.4 it is enough to check that if x ∈ L and x2 = 0 then x = 0.

Since 0 is a lower bound for some set of prime elements {pλ}Λ of L, we have x2 ≤ pλ
and so x ≤ pλ for each λ. Hence x = 0 as 0 is the lower bound of {pλ}Λ.

Under somewhat technical conditions we show that the converse is also true.

Recall that an element c of a lattice L is called compact if, whenever c ≤ ∨i∈Iai,

there exists a finite subset F ⊆ I such that c ≤ ∨i∈F ai. We say that an element

a ∈ L bounds an element b ∈ L if b ≤ a. An element a of L is called a left

(respectively, right) ideal if b ? a ≤ a (respectively, a ? b ≤ a) for all b ∈ L.

Elements that are left and right ideals are called ideals.

Theorem 2.6. Let L be an `-groupoid with zero 0 such that every element of L is

an ideal and bounds a nonzero compact element. Then L is semiprime if and only

if it is reduced.

Proof. If L is semiprime, then it is reduced by Corollary 2.5. Now assume that L

is reduced. Set

q :=
∧

{p ∈ L | p is a prime element}.

Assume q 6= 0. By hypothesis, q bounds a nonzero compact element 0 6= x1 ≤ q.

Since L is reduced, x2
1 6= 0 and, since x1 is an ideal, x2

1 ≤ x1. Again by hypothesis

we may choose a nonzero compact element 0 6= x2 ≤ x2
1. Continuing this process we

may obtain an infinite sequence of nonzero compact elements {xn}n∈N such that

for all n ∈ N:

xn+1 ≤ x2
n ≤ xn.

Now consider the set

Ω := {p ∈ L | ∀n ∈ N : xn � p}.

J.
 A

lg
eb

ra
 A

pp
l. 

20
05

.0
4:

77
-9

7.
 D

ow
nl

oa
de

d 
fr

om
 w

w
w

.w
or

ld
sc

ie
nt

if
ic

.c
om

by
 U

N
IV

E
R

SI
D

A
D

E
 D

O
 P

O
R

T
O

 o
n 

10
/1

1/
23

. R
e-

us
e 

an
d 

di
st

ri
bu

tio
n 

is
 s

tr
ic

tly
 n

ot
 p

er
m

itt
ed

, e
xc

ep
t f

or
 O

pe
n 

A
cc

es
s 

ar
tic

le
s.



March 16, 2005 9:9 WSPC/171-JAA 00102

82 C. Lomp

We shall apply Zorn’s Lemma to obtain a maximal member of Ω. First note that

Ω is not empty, since 0 ∈ Ω. Let {pλ}λ∈Λ be a chain in Ω and set p :=
∨

λ∈Λ pλ.

Assume that xn ≤ p for some n ∈ N. Then (since xn is compact) there is a λ ∈ Λ

with xn ≤ pλ, a contradiction since pλ ∈ Ω. Hence p ∈ Ω and we can apply Zorn’s

Lemma to give a maximal member p ∈ Ω.

Let us show that p is actually a prime element of L. Assume a ? b ≤ p for some

elements a and b of L. Then

(a ∨ p) ? (b ∨ p) = (a ? b) ∨ (p ? b) ∨ (a ? p) ∨ p2 ≤ p

since L is an `-groupoid and p is an ideal. Suppose that a∨ p and b∨ p are strictly

above p, then (by the maximality of p) there exist n, k such that xn ≤ a ∨ p and

xk ≤ b ∨ p. Without loss of generality we may assume n ≤ k, then

xk+1 ≤ xk ? xk ≤ xn ? xk ≤ (a ∨ p) ? (b ∨ p) ≤ p,

impossible since p ∈ Ω. Hence a ∨ p = p or b ∨ p = p, i.e. a ≤ p or b ≤ p. Hence

p is a prime ideal. But then xn ≤ q ≤ p for all n — a contradiction to p ∈ Ω. This

shows that q = 0. Hence L is semiprime.

3. The Lattice of Submodules of a Module as a Po-Groupoid

Let M be a left R-module and S := EndR(M). We denote by L(M) the lattice of

R-submodules of M and by L(R) (respectively, L(S)) the lattice of left ideals of

R (respectively, S). In order to define a prime notion on M we are looking for a

suitable “product” on the lattice of submodules L(M). One way to achieve this is

by defining a product using maps from L(M) to L(R) (respectively, L(S)) and the

multiplication in R (respectively, S) or the action of R (respectively, of S) on M .

For instance we define

φ: L(M) → L(S) φ(N) = HomR(M,N).

ψ: L(M) ×L(S) → L(M) ψ((N, I)) = NI.

Combining these maps and the action of S on M we get a product

L(M) ×L(M)
id×φ
−−−→L(M) ×L(S)

ψ
−→L(M).

This means concretely:

N ? L := ψ ◦ (id× φ)(N,L) = N HomR(M,L) =
∑

{(N)f | f : M → L}.

This product has been defined in [3] and has the following properties:

Proposition 3.1. Let M be an R-module and let ? be as above.

(1) (L(M), ?) is an `0-groupoid with the submodule 0 as zero element.

(2) All elements of (L(M), ?) are left ideals, i.e. N ? L ⊆ L for all N,L ∈ L(M).

J.
 A

lg
eb

ra
 A

pp
l. 

20
05

.0
4:

77
-9

7.
 D

ow
nl

oa
de

d 
fr

om
 w

w
w

.w
or

ld
sc

ie
nt

if
ic

.c
om

by
 U

N
IV

E
R

SI
D

A
D

E
 D

O
 P

O
R

T
O

 o
n 

10
/1

1/
23

. R
e-

us
e 

an
d 

di
st

ri
bu

tio
n 

is
 s

tr
ic

tly
 n

ot
 p

er
m

itt
ed

, e
xc

ep
t f

or
 O

pe
n 

A
cc

es
s 

ar
tic

le
s.



March 16, 2005 9:9 WSPC/171-JAA 00102

Prime Elements in Partially Ordered Groupoids 83

(3) For all submodules N,K,L of M the following hold:

(i) M ?N =
∑

{Im(f) | f : M → N} =: Trace(M,N);

(ii) N ?M = NS;

(iii) N ? (L ?K) ⊇ (N ? L) ? K;

(iv) (N + L) ? K = (N ?K) + (L ?K);

(v) N ? (K + L) ⊇ (N ?K) + (N ? L).

(4) If M is self-projective, then (L(M), ?) is an `-groupoid, i.e. ? distributes over +.

(5) If M is projective in σ[M ], then (L(M), ?) is an `-semigroup, i.e. ? is associa-

tive and distributes over +.

Proof. All conditions are easily verified. For (4) and (5) see [3].

Note that the projectivity conditions in (4) and (5) can not be weakened as

the example Q shows. The operation ? in L(Q) is neither associative nor does ?

distribute with +. Note that Q is a semi-projective Z-module (see definition before

Proposition 4.2).

We denote by Lg(M) the set of M -generated submodules of M and by L2(M)

the set of fully invariant submodules of M , which are precisely the ideals in L(M).

The set of M -generated submodules is invariant under right action of ?, i.e. if N

is M -generated, then N ? L is M -generated for all L. The set of fully invariant

submodules is invariant under left action of ?, i.e. if N is fully invariant, then also

L ? N for all L. Moreover for any N,L ∈ L2(M) we have N ? L ⊆ N ∩ L. We let

Lg2(M) := Lg(M) ∩ L2(M) be the set of M -generated, fully invariant submodules

of M . This is an integral `0-groupoid with unit element M .

A module M is called a multiplication module if every submodule N of M

is of the form IM for some two-sided ideal I of R. Hence every submodule of M is

fully invariant, i.e. L(M) = L2(M). Recall that a module M is called self-generator

if every submodule of M is M -generated. In case R is commutative and M is a

multiplication module, then M is also a self-generator, since for any ideal I and any

x ∈ I the map ϕx: M → IM with ϕx(m) := xm is R-linear. Thus multiplication

modules over commutative rings are self-generators whose submodules are fully

invariant, i.e. L(M) = Lg2(M).

For any module M and ideals I and J of R, the ?-product of IM and JM is

contained in IJM :

(IM) ? (JM) = IM Hom(M,JM) = I Trace(M,JM) ⊆ IJM

and the reverse inclusion is also easily established provided M is a self-generator,

i.e. Trace(M,JM) = JM . Hence we can describe the ?-product of submodules of

multiplication modules:

Corollary 3.2. Let M be a multiplication module which is a self-generator. Then

N ? L = IJM
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for any submodules N and L of M where I and J are ideals of R such that N = IM

and L = JM .

We see that the product of submodules of multiplication modules over commu-

tative rings as defined in [1] coincides with our ?-product. With our approach it is

not necessary to show that this product is independent of the choice of representing

ideals I and J for the submodules N and L.

For any submodule N ∈ L(M), let Rej(M,N) be the reject of N in M , i.e.

Rej(M,N) :=
⋂

{Ker(f) | f ∈ Hom(M,N)}.

Then it is easily verified that Rej(M,N) is the left annihilator of N in the po-

groupoid (L(M), ?), i.e. Rej(M,N) is the largest submodule T of M with the prop-

erty T ? N = 0. Call N ∈ L(M) a right nonzero-divisor if K ? N 6= 0 for all

K 6= 0. Thus we have N as a right nonzero-divisor if and only if Rej(M,N) = 0 if

and only if M is N -cogenerated.

4. ?-Prime Modules

Using the product ? we now define prime elements and nilpotent elements in L(M).

A module M is called retractable if HomR(M,N) 6= 0 for all 0 6= N ⊆ M

(see [20]). Retractable modules can also be characterized by the property that

Trace(M,N) is essential in N for any submodule N of M .

Theorem 4.1. The following statements are equivalent for a left R-module M with

endomorphism ring S:

(a) (L(M), ?) is a prime po-groupoid.

(b) Every nonzero submodule of M cogenerates M .

(c) For all nonzero submodules N,L of M : HomR(M,N) HomR(M,L) 6= 0.

(d) M is retractable and f HomR(M,Mg) 6= 0 for all 0 6= f, g ∈ S.

Proof. (a) ⇔ (b) 0 is prime if and only if every nonzero submodule is a right

nonzero-divisor if and only if every nonzero submodule cogenerates M .

(a) ⇒ (c) If Hom(M,N) Hom(M,L) = 0 then 0 = M Hom(M,N) Hom(M,L) =

Trace(M,N) ? L and hence L = 0 or Trace(M,N) = M ? N = 0. Thus L = 0 or

N = 0.

(c) ⇒ (d) is clear.

(d) ⇒ (a) Let N and L be two nonzero submodules of M . Since M is retractable

there are nonzero homomorphisms f ∈ Hom(M,N) and g ∈ Hom(M,L). By

hypothesis 0 6= Mf Hom(M,Mg) ⊆ N ? L.

Let us call a module that satisfies one of the above equivalent conditions a

?-prime module. This is the definition of “prime” module used by Bican et al.

in [3].

Obviously by property (d), every retractable module with prime endomorphism

ring is ?-prime. When M satisfies a projectivity condition ?-prime coincides with M
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being a retractable module with prime endomorphism ring: A module M is called

semi-projective if any diagram

M




yg

M
f

−−−→ K −−−→ 0

with K ⊆ M can be extended by some endomorphism of M . In other words,

M is semi-projective if and only if for any endomorphism f of M we have

HomR(M,Mf) = Sf where S = EndR(M).

Proposition 4.2. A semi-projective module is ?-prime if and only if it is a

retractable module with prime endomorphism ring.

It follows from an old result of Amitsur that torsionless modules over a prime

ring are retractable and have a prime endomorphism ring. Recall that an R-module

M is torsionless if it is cogenerated by R.

Proposition 4.3. Every torsionless module over a prime (respectively, semiprime)

ring is retractable and has a prime (respectively, semiprime) endomorphism ring.

Proof. See [2, Theorem 27 and Corollary 21].

A moduleM is called fully faithful if every nonzero submodule ofM is faithful.

The “classical” notion of a prime module is the following: M is prime if M is a

fully faithful R/Ann(M)-module (see [11]). It is easy to see that the annihilator

of a prime module is a prime ideal. Moreover every ?-prime module M is prime,

because if N is a nonzero submodule of M and I = Ann(N), then (IM)starN =

I(M ?N) ⊆ IN = 0. Thus IM = 0 implies I = Ann(M).

Using Amitsur’s result we can show the following:

Corollary 4.4. The following statements are equivalent for a torsionless

R/Ann(M)-module M :

(a) M is retractable with prime endomorphism ring.

(b) M is a ?-prime module.

(c) M is a prime module.

(d) Ann(M) is a prime ideal.

Proof. (a) ⇒ (b) ⇒ (c) ⇒ (d) hold always.

(d) ⇒ (a) By hypothesis R̄ := R/Ann(M) is a prime ring and M is a torsionless

R̄-module. By Amitsur’s result Proposition 4.3 M is retractable and has a prime

endomorphism ring.

The above corollary applies in particular to projective modules. Note that in

general prime modules are not ?-prime modules as the Z-module Q shows.

Recall that a ring R is called left duo if every left ideal of R is two-sided.
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Theorem 4.5. The following statements are equivalent for a module M over a left

duo ring R:

(a) M is retractable with prime endomorphism ring.

(b) M is ?-prime.

(c) M is cogenerated by R/P for some P ∈ Spec(R).

Proof. (a) ⇒ (b) holds by Theorem 4.1.

(b) ⇒ (c) holds by [16, Corollary 3.3.(1)].

(c) ⇒ (a) holds by Proposition 4.3.

We see that every ?-prime module over a commutative ring has a prime endo-

morphism ring. The author has been unable to find an example of a ?-prime module

whose endomorphism ring is not prime. Hence he states this as an

Open Problem: Find a ?-prime module whose endomorphism ring is not prime.

As with ?-prime modules, which were defined in terms of prime elements in

the `0-groupoid (L(M), ?), duprime modules were also initially defined using prime

elments in a po-groupoid, as follows. Let LM denote the set of all hereditary pre-

torsion sublasses α ⊆ σ[M ] and let LopM be LM with reversed partial ordering. The

product : of two classes α and β is defined by

α : β := {X ∈ σ[M ] | ∃A ⊆ X with A ∈ α and X/A ∈ β}.

Berg and Wisbauer defined a module to be duprime if
(

LopM , :
)

is a prime

`-groupoid.

This raises the question if the other prime notions, for instance the “classical”

prime notion of Kaplansky, can be interpretted in the context of prime elements in

po-groupoids.

Question: Does there exist a po-groupoid L attached to a module M such that M

is prime if and only if L is a prime po-groupoid?

Prime multiplication modules are precisely those with prime annihilator:

Proposition 4.6. Let M be a multiplication module. Then M is prime if and only

if AnnR(M) is prime.

Proof. The necessity is clear. Without loss of generality we might assume

AnnR(M) = 0 and R being prime. For any submodule N = IM , where I is an

ideal of R, we have AnnR(N) = AnnR(I). Since R is prime and AnnR(I)I = 0, we

have I = 0 or AnnR(I) = AnnR(N) = 0. Hence N = 0 or AnnR(N) = AnnR(M),

i.e. M is prime.

Those multiplication modules which are ?-prime can be characterised as com-

pressible modules. Recall that a module M is called compressible if it can be

embedded in each of its nonzero submodules.
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Theorem 4.7. The following are equivalent for a multiplication module M :

(a) M is compressible;

(b) M is ?-prime;

(c) M is retractable and satisfies one of the following statements:

(i) End(M) is a domain;

(ii) M is prime;

(iii) AnnR(M) is a prime ideal.

Proof. The implications (a) ⇒ (b) ⇒ (c)(ii) ⇒ (c)(iii) are always fulfilled and are

easily verified.

We show (c)(iii) ⇒ (c)(i). Let f, g ∈ End(M) with gf = 0, i.e. Im(g) ⊆ Ker(f).

Choose ideals I and J such that Im(g) = IM and (M)f = Im(f) = JM . Then

0 = (Im(g))f = I(M)f = IJM.

Hence IJ ⊆ AnnR(M) and so, since AnnR(M) is prime, either 0 = IM = Im(g) or

0 = JM = Im(f). Thus f = 0 or g = 0, i.e. End(M) is a domain.

For (c)(i) ⇒ (a) let N be a nonzero submodule of M . Since M is retractable,

we may choose a nonzero f ∈ HomR(M,N). Since gf = 0 for any g ∈

HomR(M,Ker(f)) and End(M) is a domain, we have HomR(M,Ker(f)) = 0. But

as M is retractable, f must be injective and so M can be embedded in N .

If R is commutative, then every multiplication module is a self-generator and

hence retractable. Thus the notions ?-prime, prime and compressible coincide for

multiplication modules over commutative rings.

Multiplication modules over non-commutative rings appear in the study of alge-

bras A seen as bimodules over their multiplication algebra. Let R be a commutative

ring and let A be an R-algebra with unit, but not necessarily associative. For any

a ∈ A, let La (respectively, Ra) denote the R-linear map La(x) = ax (respectively,

Ra(x) = xa) for x ∈ A. The multiplication algebra M(A) of A is the R-subalgebra

of EndR(A) generated by the maps La and Ra. A becomes a faithful unital cyclic

left M(A)-module under the ordinary action of endomorphisms on A. Denote this

action by ·, i.e. for f ∈ M(A) and a ∈ A, we set f · a := f(a). The left M(A)-

submodules are precisely the two-sided ideals of A. Let I be a two-sided ideal of A

and denote by L(I) the ideal of M(A) generated by the elements of the form Lx
where x ∈ I . One can show that I = L(I) · A, i.e. A is a multiplication module

over the not necesarily commutative ring M(A). Hence we get by Propositon 4.6

the known result that A is a prime M(A)-module if and only if M(A) is a prime

ring. Note that the endomorphism ring EndM(A)(A) is naturally isomorphic to the

centre Z(A) of A by the map f 7→ f(1). Thus A is a retractable M(A)-module

exactly when A has a large centre, i.e. every nonzero ideal of A contains a nonzero

central element. By Theorem 4.7, A is a ?-prime M(A)-module if and only if A has

a large centre and M(A) is prime.
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5. Semiprime and Weakly Compressible Modules

In this section we will discuss when (L(M), ?) is reduced, respectively, semiprime.

Recall that a module M is called weakly compressible if for any nonzero

submodule N of M there exists an endomorphism f : M → N such that f|N 6= 0

(see [20]).

Theorem 5.1. The following statements are equivalent for a left R-module M with

endomorphism ring S:

(a) (L(M), ?) is a reduced po-groupoid.

(b) Rej(M,N) ∩N = 0 for all nonzero submodules N ⊆M .

(c) M is weakly compressible.

(d) HomR(M,N)2 6= 0 for all nonzero submodules N ⊆M .

(e) M is retractable and f HomR(M,Mf) 6= 0 for all 0 6= f ∈ S.

Proof. (a) ⇒ (b) is clear since (Rej(M,N) ∩ N)2 = 0.

(b) ⇒ (c) Since Rej(M,N)∩N = 0, N 6⊆ Rej(M,N), i.e. there exists an f : M → N

such that N 6⊆ Ker(f).

(c) ⇒ (d) By definition there exist homomorphisms f : M → N with f|N 6= 0 and

g: M → Im(f) such that g|Im(f) 6= 0. Thus 0 6= gf ∈ HomR(M,N)2.

(d) ⇒ (e) That M is retractable is evident. If 0 6= f ∈ S, then Hom(M,Mf)2 6= 0

and so f Hom(M,Mf) 6= 0.

(e) ⇒ (a) For all submodules N of M there exists a non-zero f : M → N such that

f HomR(M,Mf) 6= 0. Hence 0 6= Mf HomR(M,Mf) = (Mf) ? (Mf) ⊆ N ?N .

Hence we see that the semiprime notion with respect to our ?-product is pre-

cisely the notion of a “weakly compressible” module. This “semiprime” definition

coincides with Jirasko’s in [10], following [3]. We see from 5.1(e) that a retractable

module with semiprime endomorphism ring is weakly compressible. In contrast to

the ?-prime case, over commutative rings the converse is not true: if M is the

Z-module Z ⊕ Z2, then M is weakly compressible, but EndZ(M) is not semiprime.

More generally, the direct sum of weakly compressible modules is weakly compress-

ible but, for modules M and N , EndR(M⊕N) is semiprime if and only if EndR(M)

and EndR(N) are semiprime and f HomR(M,N)f 6= 0 and g HomR(N,M)g 6= 0

for all nonzero f : N →M and nonzero g: M → N .

However, by Theorem 5.1, for a semi-projective module we get:

Corollary 5.2. A semi-projective module is weakly compressible if and only if it

is a retractable module with semiprime endomorphism ring.

If P is a prime ideal of a ring R, then R/P is a prime module. It is well-known

that a ring R is semiprime if and only if the intersection of all its prime ideals is

zero, i.e. R is a subdirect product of the prime modules R/P . Hence one might

consider modules that are subdirect products of prime modules as “semiprime”,
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as was done by P. F. Smith and R. McClasland for the “classical” prime module

concept.

In general subdirect products of prime modules do not have to be weakly com-

pressible as the Z-module Q shows. But the converse holds as we will see. First note

the following Lemma:

Lemma 5.3. Let M be a nonzero R-module and P a fully invariant submodule

of M . If P is a prime element in (L2(M), ?) then M/P is a prime module.

Proof. Let S be the endomorphism ring of M and let P ⊆ K ⊆ M for some

submodule K of M . Set I = AnnR(K/P ). Note that I = AnnR(KS/P ). Since P is

fully invariant and (IM) ? (KS) ⊆ IKS ⊆ P , we get

(IM + P ) ? (KS) = [IM ? (KS)] + [P ? (KS)] ⊆ P.

Note that IM + P and KS are fully invariant submodule of M , i.e. elements of

L2(M). Since P is a prime element in (L2(M), ?) we get IM ⊆ IM + P ⊆ P or

K ⊆ KS ⊆ P , i.e. I = AnnR(M/P ) or K = P . Hence M/P is a prime module.

We first show that every weakly compressible module can be represented as a

subdirect product of prime modules.

Corollary 5.4. Every weakly compressible module is a subdirect product of prime

modules.

Proof. Let M be a weakly compressible module and set

Q := ∩{P ⊆M | | P is fully invariant and M/P is prime}.

Assume Q 6= 0. Choose any nonzero element 0 6= x1 ∈ Q and set I1 := Rx1. Since

L(M) is reduced and since I1 6= 0 we get I1 ?I1 6= 0. Hence we can choose a nonzero

element 0 6= x2 ∈ I1 ? I1. Let I2 := Rx2, then

I2 ⊆ I1 ? I1 ⊆ I1 ⊆ Q

holds. Continuing this process we obtain an infinite family of nonzero elements

{xn}n∈N such that for all n ∈ N:

Rxn+1 =: In ⊆ In ? In ⊆ In := Rxn.

Now consider the set

Ω := {P ⊆M | P is fully invariant and ∀n ∈ N : In * P}.

We shall apply Zorn’s Lemma to obtain a maximal member of Ω. First note that

Ω is not empty, since 0 ∈ Ω. Let {Pλ}λ∈Λ be a chain in Ω and set P :=
⋃

λ∈Λ Pλ.

Then P is fully invariant since for every f ∈ EndR(M) and every p ∈ P there exists

an λ ∈ Λ such that p ∈ Pλ. Thus (p)f ∈ (Pλ)f ⊆ Pλ ⊆ P . On the other hand

assume there exists an n ∈ N such that In = Rxn ⊆ P . Then there is an λ ∈ Λ

with xn ∈ Pλ — a contradiction to Pλ ∈ Ω. Hence P ∈ Ω and we can apply Zorn’s

lemma that gives us a maximal member P ∈ Ω.
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Let P ⊆ K ⊆M and set I = AnnR(K/P ). Note that I = AnnR(KS/P ) where

S = EndR(M), hence we may assume that K is a fully invariant submodule of M .

Since P is fully invariant and IM ?K ⊆ IK ⊆ P , we get

(IM + P ) ? K = IM ?K + P ? K ⊆ IK + PS ⊆ P.

If P is properly contained in IM + P as well as in K, then there exist by the

maximality of P ∈ Ω indices n and k such that In ⊆ IM + P and Ik ⊆ K (note

that IM + P is a fully invariant submodule of M). Without loss of generality we

may assume n ≤ k, then

Ik+1 ⊆ Ik ? Ik ⊆ In ? Ik ⊆ (IM + P ) ? K ⊆ P.

But this is impossible since P ∈ Ω. Hence IM + P = P , i.e. I = AnnR(M/P )

or K = P , i.e. M/P is a prime module. But then In ⊆ Q ⊆ P for all n — a

contradiction to P ∈ Ω. This shows that Q must be equal to zero.

Actually to conclude that M is a subdirect product of prime modules we just

need that (L2(M), ?) is reduced. There are many “semiprime” notions for modules.

We will sumarize them in the next Proposition. First of all recall some definitions.

Jirasko called a module M pseudo-semiprime if N ∩ AnnR(N)M = 0 for all

N ⊆ M (see [10]). Since AnnR(N)M ⊆ Rej(M,N) holds, we see that weakly

compressible modules are pseudo-semiprime.

Proposition 5.5. Consider the following statements on a module M :

(i) M is retractable and has a semiprime endomorphism ring;

(ii) M is weakly compressible;

(iii) every essential submodule of M cogenerates M ;

(iv) (L2(M), ?) is semiprime;

(v) M is a subdirect product of prime modules;

(vi) M is pseudo-semiprime;

(vii) AnnR(N) = AnnR(M) for every essential submodule N of M ;

(viii) AnnR(M) is semiprime.

Then the implications (i) ⇒ (ii) ⇒ (iii) ⇒ (iv) ⇒ (v) ⇒ (vi) ⇒ (vii) ⇒ (viii)

hold. If M is a torsionless as R/Ann(M)-module then all statements (i)–(viii) are

equivalent.

Proof. (i) ⇒ (ii) by Theorem 5.1

(ii) ⇒ (iii) By 5.1 N ∩ Rej(M,N) = 0 for any submodule N of M . Hence every

essential submodule N cogenerates M .

(iii) ⇒ (iv) Let N be a fully invariant submodule of M . Choose a complement

L of N , i.e. L is maximal with respect to the property L∩N = 0. It is well-known

that N ⊕ L is an essential submodule of M . Since N is fully invariant, N ? L ⊆

N ∩ L = 0. Hence N ⊆ Rej(M,L). Assume N ?N = 0, then N ⊆ Rej(M,N) and

N ⊆ Rej(M,N) ∩ Rej(M,L) = Rej(M,N ⊕ L) = 0,
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since N ⊕ L cogenerates M by hypothesis. Thus (L2(M), ?) is reduced. By

Theorem 2.6 (L2(M), ?) is semiprime.

(iv) ⇒ (v) follows from the proof of 5.4.

(v) ⇒ (vi) Let {Pλ}Λ we submodules such that M/Pλ is prime and
⋂

Λ Pλ = 0.

Let N be a submodule of M . Set Λ′ := {λ ∈ Λ | N 6⊆ Pλ}. For all λ ∈ Λ′ we have

Ann((N + Pλ)/Pλ) = Ann(M/Pλ). Hence

AnnR(N)M ⊆

[

⋂

λ∈Λ′

AnnR((N + Pλ)/Pλ)

]

M ⊆
⋂

λ∈Λ′

AnnR(M/Pλ)M ⊆
⋂

λ∈Λ′

Pλ.

Thus N ∩ AnnR(N)M ⊆
(
⋂

Λ\Λ′ Pλ
)

∩
(
⋂

Λ′ Pλ
)

= 0.

(vi) ⇒ (vii) is clear.

(vii) ⇒ (viii) Without loss of generality we may assume that M is faithful. Let I be

an ideal of R such that I2 = 0. Choose a submodule N of M maximal with respect

to the property that N ∩ (IM) = 0. Then N ⊕ (IM) is an essential submodule

of M . By hypothesis 0 = AnnR(N ⊕ (IM)). Since IN ⊆ N ∩ (IM) = 0, we get

I ⊆ AnnR(N ⊕ (IM)) = 0.

(viii) ⇒ (i) if M is a torsionless R/Ann(M)-module, then by Amitsur’s result

Proposition 4.3 EndM () is semiprime and M is retractable.

For multiplication modules over a commutative ring we can show that the con-

ditions above are all equivalent:

Proposition 5.6. Let M be a multiplication module. Then M is weakly compress-

ible if and only if M is retractable and AnnR(M) is a semiprime ideal.

Proof. Let f ∈ EndR(M) and choose an ideal I of R such that Im(f) = IM . If

f2 = 0 then

0 = (Im(f))f = (IM)f = I(M)f = I2M.

Hence I2 ⊆ AnnR(M). As AnnR(M) is semiprime, I ⊆ AnnR(M), i.e. f = 0, i.e.

EndR(M) is reduced. By Theorem 5.1 M is weakly compressible.

Whether every weakly compressible module is a subdirect product of ?-prime

modules is not known to me. However in case the module is self-projective we may

apply 2.6.

Proposition 5.7. The following statements are equivalent for a self-projective

module M :

(a) M is a subdirect product of ?-prime modules;

(b) M is weakly compressible;

(c) (Lg2(M), ?) is a reduced integral `-groupoid.
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Proof. (a) ⇒ (b) Assume M is a subdirect product of ?-prime modules. Let

{Pλ}Λ be a family of submodules such that each M/Pλ is ?-prime. Since M is

self-projective, we have by [3, 2.7] that the Pλ are prime elements in L(M). Hence

L(M) is a semiprime `-groupoid and reduced by 2.5, i.e. M is weakly compressible.

(b) ⇒ (c) by Proposition 5.5 (L2(M), ?) is semiprime. Hence also (Lg2(M), ?) is

reduced.

(c) ⇒ (a) The hypotheses of 2.6 are fulfilled. Hence 0 is the intersection of prime

elements Pλ ∈ Lg2(M). Since each Pλ is fully invariant and M is self-projective,

by [3, 2.6] each M/Pλ is a ?-prime module, i.e. M is a subdirect product of ?-prime

modules.

Note that if (N ? N) ? M = N ? (N ?M) holds for all N ⊆ M then (d) ⇒ (b)

since in this case

(N ?M) ? (N ?M) = N ? (N ?M) = (N ?N) ?M,

i.e. N2 = 0 if and only if (N ?M)2 = 0. But as N ?M is fully invariant, we get M

is weakly compressible, i.e. L(M) is reduced, if and only if L2(M) is reduced.

Open Problem: (1) Find a weakly compressible module which is not a subdirect

product of ?-prime modules.

(2) Find a module that is cogenerated by each of its essential submodules, but

which is not weakly compressible.

6. Prime and Semiprime Abelian Groups

In this section we want to determine the abelian groups that have the previously

considered prime properties.

Faithful prime abelian groups coincide with the torsionfree abelian groups. The

faithful ?-prime abelian groups M are precisely the torsionless abelian groups, i.e.

those embeddable in a direct product of infinite cyclic groups. As noted, this is

equivalent to M being retractable with prime endomorphism ring.

The nonfaithful prime abelian groups are precisely those that are isomorphic

to a direct sum of copies of Zp. In the nonfaithful case, prime and ?-prime abelian

groups coincide.

The following theorem of Samsonova [17] characterizes the weakly compressible

abelian groups:

Proposition 6.1. The following statements are equivalent for an abelian group M :

(a) M is a subdirect product of ?-prime modules.

(b) M is weakly compressible.

(c) T (M) is elementary abelian and M/T (M) is torsionless.

Note that M = Q is prime, and hence a subdirect product of prime modules,

but not weakly compressible.
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We now characterize the abelian groups that are subdirect products of prime

abelian groups. Dauns called a module M semiprime if aRam = 0 implies am = 0

for all m ∈ M and a ∈ R. In other words the annihilator of each element m of

M is a semiprime left ideal in the sense of Koh. In case R is commutative, M is

semiprime in the sense of Dauns if and only if the annihilator of each submodule

of M is a semiprime ideal (see [7] or [6]). Note that any pseudo-semiprime module

is semiprime in the sense of Dauns. For abelian groups the concepts of Dauns and

Jirasko coincide:

Proposition 6.2. The following statements are equivalent for an abelian group M :

(a) M is a subdirect product of prime abelian groups.

(b) M is pseudo-semiprime.

(c) M is semiprime in the sense of Dauns.

(d) T (M) is elementary abelian.

In [9] Jenkins and Smith give an example of a module over a commutative ring

that is semiprime in the sense of Dauns, but which is not a subdirect product of

prime modules.

Bearing in mind that the “classical” notion of prime says that every nonzero

submodule has the same annihilator as the module itself, a natural “semi” version

of this notion is the restriction of this condition to essential submodules. In this

case a module M is defined to be semiprime if every essential submodule of M has

the same annihilator as M (see Lemma 5.5(d)). This notion seems to be very weak,

since it is easily seen that over an integral domain any module that is not torsion

must be semiprime in this sense. Moreover this class is closed under direct products

and direct sums, but may not be closed under direct summands. For instance if

M = Z ⊕ (Z/4Z) then M is semiprime in this sense, since any essential submodule

of M would intersect Z ⊕ 0 and hence contains a torsionfree element making its

annihilator zero. On the other hand Z/4Z is not semiprime.

For abelian groups we can characterize this property as follows:

Proposition 6.3. An abelian group M has the property that every essential sub-

group of M has the same annihilator as M if and only if M is not torsion or T (M)

is elementary abelian.

7. Applications to Module Algebras over Hopf Algebras

Since we will apply the above module theoretic notions in this section to Hopf

module algebras, we assume that the reader is familiar with the basic theory of

Hopf algebras.

Let R be a commutative ring and H a Hopf algebra over R. Then H is an

R-algebra that admits a comultiplication ∆: H → H ⊗H and a counit ε: H → R

which are R-algebra maps. We make free use of Sweedler’s symbolic Sigma-notation

for the comultiplication, i.e. for any h ∈ H we write ∆(h) =
∑

(h) h1⊗h2. Moreover
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S denotes the antipode ofH , i.e. an anti-algebra map S: H → H such that ε(h)1H =
∑

(h) S(h1)h2 =
∑

(h) h1S(h2) holds for all h ∈ H .

An R-algebra A is called a left H-module algebra if A is a left H-module such

that h·(ab) =
∑

(h)(h1·a)(h2·b) and h·1A = ε(h)1A for all h ∈ H and a, b ∈ A, where

‘·’ denotes the action of H on A. For any left H-module M set MH := {m ∈ M |

h ·m = ε(h)m ∀h ∈ H}. In particular AH becomes a subring of A, called the fixed

ring of A. The smash product of A and H is the R-module A#H := A⊗H whose

elements are finite sums of tensors a ⊗ h =: a#h. A#H becomes an R-algebra

with the product: (a#h) (b#g) :=
∑

(h) a(h1 · b)#h2. A is a subring of A#H and

also a cyclic left A#H-module, where an element a#h acts on an element x ∈ A

by (a#h) · x := a(h · x). The left A#H-submodules of A are precisely the H-stable

left ideals of A.

Let M be a left A#H-module. The map ϕM : HomA#H(A,M) → MH with

ϕM (f) := (1A)f for any f ∈ HomA#H(A,M) is an isomorphism of AH -modules.

The collection of isomorphisms ϕM are natural transformations between the func-

tors HomA#H(A,−) and (−)H . Note that EndA#H(A) ' AH and HomA#H(A, I) '

IH = I ∩ AH for any H-stable left ideal of A. We say that A has a large fixed

ring if AH intersects any nonzero H-stable left ideal non-trivially.

The module theoretic notions developed in the last sections have their equiva-

lents in the case of Hopf actions as follows:

Lemma 7.1. let A be an H-module algebra and H a Hopf algebra over some com-

mutative base ring R. Then

(1) A is a retractable left A#H-module if and only if A has a large fixed ring.

(2) A is a semi-projective left A#H-module if and only if (Ax)H = AHx for all

x ∈ AH .

(3) A is a self-projective left A#H-module if and only if (A/I)H = AH/IH for all

H-stable left ideals I of A.

Proof. (1) is clear and (2) follows from the fact that A is semi-projective as

an A#H-module if and only if for any f ∈ EndA#H(A): HomA#H(A, (A)f) =

EndA#H(A)f . Applying the correspondence between the functors HomA#H(A,−)

and (−)H we get (Ax)H = AHx for all x ∈ AH .

(3) A is self-projective if and only if HomA#H(A,−) is exact on every short

exact sequence

0 → I → A→ A/I → 0

for any H-stable left ideal I of A. Since the functor HomA#H(A,−) is isomorphic

to (−)H we get that A is self-projective as an A#H-module if and only if (A/I)H '

AH/IH for all H-stable left ideals I of A.

(4) See [15].
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A left integral of an Hopf algebra is an element t ∈ H such that ht = ε(h)t for

all h ∈ H . Left integrals are related to the finiteness of the Hopf algebra (see [14]).

A module algebra A is said to have an element of trace 1 if there exists an element

a ∈ A and a left integral t such that t·a = 1. If A contains an element of trace 1 then

A is a projective left A#H-module. This happens in particular if H is separable

over R (see [14, 4.8, 5.8]). If H is a finite dimensional Hopf algebra over some field

R then A is a projective left A#H-module if and only if A has an element of trace 1

(see [14, 4.8]).

Since I ∩ AH = IH = (1A) HomA#H(A, I) for any H-stable left ideal I of A,

we see that the ?-product I ? J of two H-stable left ideals I and J of A is equal

to IJH . We can now apply the characterization of weakly compressible modules to

the case of Hopf actions:

Proposition 7.2. Let A be an H-module algebra and H a Hopf algebra over some

commutative base ring R. The following statements are equivalent:

(a) A is a weakly compressible A#H-module.

(b) A has a large fixed ring and x(Ax)H 6= 0 for all 0 6= x ∈ AH .

(c) AnnI(I
H) = 0 for all nonzero H-stable left ideals I of A.

In this case A is H-semiprime, i.e. A does not contain any nonzero nilpotent

H-stable ideal.

Proof. (a) ⇔ (b) follows from 5.1 and the correspondence between (Ax)H and

HomA#H(A,Ax).

Note that AnnI(I
H ) = I ∩ AnnA(IH). Since IH = (1) HomA#H(A, I), we have

aIH = 0 if and only if a ∈ Rej(A, I) for all a ∈ A. Hence AnnA(IH) = Rej(A, I)

and (a) ⇔ (c) also follows from 5.1.

Note that condition (c) readily implies that if A is weakly compressible, then it

must be H-semiprime.

If A is semi-projective as an A#H-module the condition on A of being weakly

compressible is best described by A having a large semiprime fixed ring.

Proposition 7.3. Suppose that (Ax)H = AHx holds for all x ∈ AH . Then A is

a weakly compressible left A#H-module if and only if A has a large semiprime

fixed ring.

Proof. This follows from 5.2.

Note that if N is a fully invariant submodule of a module M then M/N is semi-

projective (respectively, self-projective) providedM is semi-projective (respectively,

self-projective). Moreover, if we let ?′ and ? denote the products in L(M/N) and

L(M) respectively and assume that M is self-projective, then for any submodules

K,L,N of M with N ⊆ K,L we have K/N ?′ L/N = [(K ? L) +N ]/N .
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Using the characterization of self-projective weakly compressible modules we

can state the following:

Proposition 7.4. Suppose (A/I)H = (AH+I)/I holds for all H-stable left ideals I.

Then A is a weakly compressible left A#H-module if and only if A is a subdirect

product of H-module algebras with large prime fixed rings.

Proof. Let L := {I ⊆ A | I is an H-stable ideal of A}. Then (L, ?) is an

`-subgroupoid of (L(A#HA), ?). If A is weakly compressible, then (L, ?) is semiprime

by 2.6 and A is a subdirect product of prime elements of (L, ?). Let {Pi} beH-stable

ideals that are prime elements in (L, ?). The quotients A/Pi are H-module algebras

that are ?-prime self-projective left A#H-modules. Since the A#H-module struc-

ture of A/Pi coincides with its (A/Pi)#H-module structure each factor A/Pi has

a large prime fixed ring by 7.3. The converse follows from 5.7.

Finally we come to the case where A is projective as an A#H-module:

Theorem 7.5. Suppose A is projective as a left A#H-module. Then A is a weakly

compressible left A#H-module if and only if AnnA#H(A) is a semiprime ideal.

As mentioned before A is projective as A#H-module if H is separable over R or

if H is finite dimensional over some field R and A contains an element of trace 1.

If A#H is semiprime and A is projective as an A#H-module, we know by

Amitsur’s Proposition that A has a large semiprime fixed ring (and hence A is

weakly compressible). If A is weakly compressible then it is H-semiprime. It is an

open question whether A#H is always semiprime for a semisimple Hopf algebra H

and an H-semiprime module algebra A.

Cohen and Fishman asked in [5] whether the smash product is semiprime pro-

vided A is semiprime andH is semisimple. For group actions this had been shown by

Montgomery and Fisher [8]. It has also been shown in [15] that A#H is semiprime

provided A is a commutative semiprime module algebra over a semisimple Hopf

algebra H over a field of characteristic 0. Those Hopf algebras H such that A#H

is semiprime provided A is H-semiprime are called strongly semisimple.

Corollary 7.6. Let H be a strongly semisimple Hopf algebra over a ring R and let

A be a left H-module algebra. Then the following statements are equivalent:

(a) A#H is semiprime;

(b) A has a semiprime large fixed ring;

(c) A is weakly compressible A#H-module;

(d) A is H-semiprime.
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