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Abstract

Econophysics is the main topic of this thesis. As an interdisciplinary research field, it
seeks to apply theories and methods originally developed in statistical physics, with others
coming from non-linear dynamics, in order to solve problems in Economics.

The focus of this work is on financial time series and the study of the values of indexes of
the major markets worldwide. A stock market index is a listing of stocks and a statistics
reflecting the composite value of its components. The stock index values give us statistics
reflecting the actual state of the market. The time series resulting from these values is a
registry of the stock market performance.

In order to decipher the secrets of financial time series, several mathematical and com-
putational techniques are used here. On the computational side an emphasis is made on
the use of Free Software and the repeatability of results. In the mathematical frame the
emphasis is on entropy measures, with entropy understood here in a broader sense as a
measure of uncertainty.

The first application of the techniques toolbox is PSI-20 (Portuguese Stock Index - 20),
a Portuguese index of the 20 most liquid assets of the Portuguese Stock market.

Following the work on PSI-20 a new method is propose for studying the Hurst expo-
nent, which includes investigation of both time and scale dependency. This approach
permits the recovery of major events, affecting worldwide markets, (such as Sept. 11th
2001) and facilitates examination of the propagation of effects produced across different
scales. Such effects may include early awareness, distinctive patterns of recovery, as well
as comparative behaviour distinctions in emergent/established markets. The emphasis on
time dependence serves to demonstrate the importance of entropy measures as snapshots
of market uncertainty, which have their own dynamic.

We developed and applied a new technique, the TSDFA (Time and Scale Detrended
Fluctuation Analysis), to study the time evolution of each market. Major features may
include transition from a developing to a mature state, (International Finance Corporation
definition). Comparing the results obtained using TSDFA to all markets, we identify
groups that display similar behaviour at any given time. This classification allow us to
distinguish perturbations with global or more general effect, (e.g. Asian tiger crash, 9/11,
Madrid bomb attack in 2004 and others) from local influences affecting a small set of
markets or even a single market only.

Interestingly, in spite of known differences between emerging and established markets,
the evidence suggests that, in recent years, entropy measures are convergent across markets
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Abstract

studied worldwide. This can be construed as an increasing number of markets achieving
or mimicking mature behaviour relatively rapidly, irrespective of their trading capability,
which suggests that windows of opportunity are narrowing for investors. The stakes are
raising.
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Resumo

A Econofísica é o tema principal desta tese. A Econofísica é uma área de investigação in-
terdisciplinar que aplica teorias e métodos desenvolvidas na Física Estatística, juntamente
com outros da dinámica não linear, de modo a resolver problemas em Economia.

Este trabalho foca-se nas séries temporais financeiras e estuda o valor dos indíces das
principais bolsas mundiais. O índice de uma bolsa de valores é uma listagem das acções
juntamente com uma estatística que reflecte o valor composto dos seus componentes. O
valor do indíce dá-nos uma estatística que reflecte estado actual do mercado. A série
temporal resultante é um indicador da performance do mercado.

De modo a decifrar os segredos das séries temporais financeiras usamos aqui várias
técnicas matemáticas e computacionais. Do lado computacional a ênfase é colocada no
uso do Software Livre e na capacidade de repetir os resultados. Na vertente matemática
a ênfase vais para as medidas de entropia, com a entropia a ser entendida aqui no sentido
mais alargado como uma medida da incerteza.

A primeira aplicação do conjunto de ferramentas que se reuniu é no PSI-20 (Portuguese
Stock Index - 20), o índice da Bolsa de Valores portuguesa com os 20 títulos mais líquidos
do mercado.

No seguimento do estudo do PSI-20 proponho um novo método de estudar o expoente
de Hurst, o qual inclui estudar a dependência temporal e de escala. Esta aproximação per-
mite recuperar acontecimentos importantes que afectam a evolução das bolsas (tal como
o 11 de Setembro de 2001) e facilita o exame da propagação dos efeitos nas diferentes
escalas temporais. Esses efeitos incluem uma percepção precoce, distintos padrões de re-
cuperação, assim como uma distinção no comportamento comparativamente a mercados
emergentes/maduros. A ênfase na dependência temporal serve para demonstrar as medi-
das de entropias como “instantâneos” da incerteza do mercado, a qual tem a sua própria
dinâmica.

Aplicamos a TSDFA (Time and Scale Detrended Fluctuation Analysis) ao estudo da
série temporal de cada mercado. Algumas das principais características são, por exemplo,
a mudança de um estado emergente para um estado desenvolvido. Comparando os resul-
tados obtidos usando a TSDFA para todos os mercados permite-nos identificar grupos de
mercados que um comportamento semelhante nos diferentes tempos. Esta classificação
permite-nos distinguir perturbações globais (por exemplo o crash dos Tigres Asiáticos, o
111 de Setembro, o ataque do 11 de Março em Madrid e outros) das perturbações locais
que afectam apenas um grupo restrito de mercados, quando não só apenas um.
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É intereressante que, apesar das diferenças conhecidas entre mercados emergentes e
mercados estabelecidos, as evidências sugerem que, nos últimos anos, as medidas de en-
tropia estão a convergir ao longo de todos os mercados estudados. Isto pode ser entendido
uma vez que cada vez mais mercados alcançam ou mimetizam o comportamento dos mer-
cados maduros de forma relativamente rápida, independentemente da sua capacidade de
transacção, o que sugere um estreitar das oportunidades para os investidores. A parada
está a aumentar.
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Résumé

L’Econophysique est le subject principal de cette thèse. L’Econophysique est un champ
interdisciplinaire de recherche, appliquant des théories et des méthodes développées à
l’origine dans la physique statistique, aussi d’autres qui viennent de la dynamique non
linéaire, afin de résoudre des problèmes dans les sciences économiques.

Le centre de ce travail est sur la série chronologique financière, étudiant les valeurs des
indices des marchés principaux dans le monde entier. Un indice de marché boursier est
une liste des stocks, et une statistique reflétant la valeur composée de ses composants. La
valeur d’indice des actions nous donne des statistiques reflétant l’état réel du marché. La
série chronologique résultant de prendre ces valeurs est un enregistrement de l’exécution
du marché boursier.

Afin de déchiffrer les secrets de la série chronologique financière, plusieurs techniques
mathématiques et informatiques sont employées ici. Du côté informatique une emphase
est faite sur l’utilisation du logiciel libre et la répétabilité des résultats. Sur l’armature
mathématique l’emphase va aux mesures d’entropie, avec l’entropie comprise ici dans un
plus large sens, comme mesure d’incertitude.

La première application de la boîte à outils de techniques est PSI-20 (indice des actions
portugais - 20), un indice portugais des 20 actifs plus disponibles du marché boursier
portugais.

Après le travail sur PSI-20 je propose une nouvelle méthode d’étudier l’exposant de
Hurst, qui inclut la recherche sur le temps et la dépendance de balance. Cette approche
permet le rétablissement des événements principaux, affectant les marchés mondiaux,
(comme le 11 septembre 2001) et facilite l’examen de la propagation des effets produits à
travers différentes balances. De tels effets peuvent inclure la première conscience, modèles
distinctifs de rétablissement, aussi bien que des distinctions comparatives de comporte-
ment sur des marchés d’emergent/établis. L’emphase sur la dépendance de temps sert
à démontrer l’importance des mesures d’entropie comme instantanés de l’incertitude du
marché, qui ont leur propre dynamique.

Nous appliquons le TSDFA (Time and Scale Detrended Fluctuation Analysis) à une
étude de l’évolution temporelle de chaque marché. Les dispositifs principaux peuvent
inclure la transition de se développer à un état mûr, (définition de société de finance
internationale). Comparant les résultats obtenus en utilisant TSDFA à tous les marchés,
nous identifions les groupes qui montrent comportement semblable à n’importe quelle
heure indiquée. Cette classification nous permettent de distinguer des perturbations avec
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Résumé

l’effet global ou plus général, (par exemple le krash de tigres asiatiques, l’attaque de le 11
septembre 2001, l’attaque de bombe en 2004 a Madrid et d’autres) des influences locales
affectant un petit ensemble de marchés ou même un marché seulement.

Intéressant, malgré des différences connues entre l’émergence et les marchés établis,
l’évidence suggère que, ces dernières années, les mesures d’entropie sont convergentes à
travers des marchés aient étudié dans le monde entier. Ceci peut être interprété comme
un nombre croissant de marchés réalisant ou imitant le comportement mûr relativement
rapidement, indépendamment de leurs possibilités marchandes, qui suggèrent un rétrécir
des fenêtres pour des investisseurs.
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1. Introduction

"Science may be described as the art of systematic oversimplification." - Karl
Popper

1.1. Econophysics

If I had to choose a single keyword to describe the work done in this thesis that word
would be Econophysics. Econophysics is a research area that applies tools from statistical
physics and more recently from dynamical systems and complex systems to the study of
economic and financial problems. The coining of the term econophysics occurred in 1995
as it can be read from the author in a later article [Stanley, 1999].

Econophysics is associated with the interest of mathematics and physics in the study
of complex systems. As can be seen in the Historical Perspective Section below, the
motivation comes from many different contributions, from physics, mathematics and even
(ironic for some) from Economics [Pareto, 1897].

In this introductory Chapter the motivation, branches and an historical perspective for
Econophysics are presented. It is important to note that no techniques or tools presented
are exclusive of Econophysics. Those ideas and tools are presented here because they have
an important part in the development of the main ideas used in this work.

After introducing Econophysics as the general scientific area, the specific contribution
of this thesis is outlined in Section 1.2. An overview of the work and a short walk through
the thesis structure is sketched with the purpose of conveying the relation between the
different parts of this work.

1.1.1. Motivation

Why are we interested in economy and finance?

There are several possible answers to this question. We (physicists and mathematicians)
can work with empirical data and construct phenomenological theories. The quantitative
nature of pure sciences allows a degree of abstraction when analysing series of numbers.

One other answer is that statistical physics has useful approaches to deal with collective
dynamics in systems. These can be seen in such areas as traffic analysis (cars or network
packets), granular mediums, foam studies, biomedical signals, earthquakes studies and
river flow analysis, amongst others.
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1. Introduction

On the other hand current prevailing economic theory assumes equilibrium, with de-
scriptions mostly static. Using the language of field theory as the theory of the economy
similar to "mean field" theory in physics, actions and reactions are balanced without taking
into account the interaction between the different agents.

For a summary of the motivation of physicists and mathematicians there is one quotation
from Zhang [1998] that captures the spirit:

“One can never hope to get a future economy theory as quantitative and
predictive as physical laws. However, this should not deter us from searching
a framework to understand some basic phenomena qualitatively.”

Relation with models

There are two alternatives to problem solving in econophysics: one is to use a model and,
from there, study the real data to infer the consequences; the other is to look to the data
and from there infer a model.

These two complementary approaches have different applications, the former is used
in physics and economics (where the models are assumed) while the latter is used in
traditional time series analysis. The approach followed in Econophysics is typically to
look first at the data and then to get the best model that describes it. This empirical
overview of the data tends to be a first approximation to an important and complex
subject.

One of the implicit goals of Econophysics, interesting and at the same time quite chal-
lenging, is to merge these two approaches and make a bridge between Econophysics and
Economics: data are only useful within an interpretative framework. As with other com-
plex systems, economics, and especially finance has lots of data available. To analyse these
we have to summarise and reduce them to manage the complexity. This means the we have
to choose among a myriad of paths. The use of Econophysics tools permits exploration of
new areas and quantitative testing of relevant hypotheses.

Also interesting is the domain of applicability; Econophysics is mainly used where we
have a huge flow of data. The empirical approach allows the study of data where no further
conditions are assumed about stationarity or other features. For further arguments see e.g.
Bouchaud and Potters [2001]. We have also some researchers, e.g. [Ball, 2006], warning
against the arbitrary use of scaling relations, without justifying their value: the proverbial
“if you have a hammer everything looks like a nail”.

1.1.2. Branches

Econophysics is a broad scientific area and its current popularity can be attested by the
daily number of related papers published in arXiv (http://arxiv.org/). Although all
the subareas (branches) share the same basic principles it is possible to distinguish several
distinct areas of study in Econophysics. One of the basic assumptions shared is the belief
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in scaling relations implicit in the results (see [Bouchaud and Potters, 2001, Mantegna
and Stanley, 2000]).

The main focus of this work is (financial) time series analysis, although we reference
other branches for completeness. It must be said that, as with any classification of ongoing
scientific research, this is probably incomplete and inevitable subject to change, yet the
division presented here seems to best capture the different subareas at present.

Time series analysis (financial data) of returns

It is traditional to consider equally spaced data and those with smaller time periods (high
frequency data). In this work we will consider the interval between data points as one
day. A unique feature is restricting consideration to trade days, we only consider trade
days and thus one trading day follows another trading day.

The frequency of data must be taken into account because as we shall see measures for
different scales yield different results. This granularity effect will be also one of the main
topics of this work.

As in the study of time series it should be noted that common statistics are based on
tests which assume independence between samples, this clearly excludes them here since
all values are generally related in time.

In Econophysics we do not study the original financial series. We focus instead on a
transformed quantity, (as in the financial literature), namely the returns. Returns series
are used to analyse and model financial markets. For an asset with an associated time
series x we have the following definition.

Definition 1.1.1. Let xi be the value of a time series x at time i. Returns are defined as

ηi = log
xi

xi−1
, (1.1)

where ηi is the return at time step i.

An asset is any good to which we can give a price. Since xi are asset values they are
positive and thus the returnsSometimes these called log-returns to distinguish them from
the same quantity without the logarithm being applied. In what follows in this work,
returns means always the log returns. are always well defined.

The use of of the ratio between two consecutive values makes the quantity of study
dimensionless, and the use of logarithms gives a different sign to gains and losses.

Returns can (and will in this work) be used to study the inherent features of any given
time series: time scale (characteristic time) for crash recovery; distribution of returns
(scale dependence); measures of intrinsic risk and uncertainty. Returns can be used also
to compare different series, search for patterns both exclusive to some series only or for
the whole group of series. We can use them to give us a new perception of the involved
correlations.
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The complexity of financial time series can not be reduced to single numbers, and every
technique allow us to see some part of the picture.

Study of distributions

Present in all econophysics branches is the conviction of scaling arguments, [Mantegna
and Stanley, 2002] coming from the study of systems in critical states. In an ironic twist,
distributions of income and wealth was a subject studied earlier (see work from Vilfredo
Pareto [1897], an economist), who found that large values in these distributions follow
universal scaling behaviour independent of the countries considered.

The empirical study of those distributions led also to the analysis of distributions of
economic shocks, growth rate variations, firm and city sizes. In all these measures scaling
laws appeared, thus giving confidence that the same type of analysis could be applied as
those used to characterise complex systems near critical behaviour.

Networks

Networks have been studied at an early stage in the history of mathematics; the famous
problem of Kronisberg bridges e.g. was solved by Euler in the 17th century. More re-
cently we had the work of Erdös and Rényi [1959]. Yet only recently, with the enormous
growth in computer power some of those problems have been looked at again from a dif-
ferent viewpoint. Examples of these types of networks include small worlds and scale free
networks, (see Newman [2003]).

Agent based systems

The analogy between cellular automata, with simple laws that rule the interaction between
neighbours, and economical systems, with all agents individually seeking profit maximisa-
tion, has led to the use of agent based systems. The agents are autonomous entities that
live and interact among them usually by neighbourhood relations.

The set of ingredients for modelling markets are:

1. a large number of independent agents participate in a market;

2. each agent has alternatives in making decisions;

3. the aggregate activity results in a market price, which is known to all;

4. agents use public price history to make their decisions.

For a recent review of the use of agent based systems in econophysics see Ausloos [2006].
Another type of agent based systems is that related to Game theory where several cases

are well known like the prisoner’s dilemma and the Minority game.
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1.1.3. Historical perspective

A first theory of stock-market fluctuations was proposed by Bachelier [1900], five years
before Einstein’s famous paper on Brownian Motion [Einstein, 1905], in which Einstein
derived the partial differential heat/diffusion equation governing Brownian motion and
estimated for the size of the molecules.

In 1900, Bachelier studied the Paris Stock Exchange in his PhD thesis introducing Brow-
nian motion to describe the evolution of the financial assets. Bachelier gave the distribution
function for what is now known as the Wiener stochastic process – the stochastic process
that underlies Brownian Motion – linking it mathematically with the diffusion equation.
The probabilist Feller [Feller, 1968] had originally called it the Bachelier-Wiener process.
It is accepted that Einstein in 1905 was not aware of Bachelier’s work. This work states
that the second order moments of the increments of a heat/diffusion process scale as

E {(X(t2)−X(t1))
2} ∝ |t2 − t1| . (1.2)

Where X is stochastic process under study.

His thesis report was signed by Henri Poincaré, observing that "M. Bachelier has evi-
denced an original and precise mind [but] the subject is somewhat remote from those our
other candidates are in the habit of treating." Nevertheless, the thesis anticipated many
of the mathematical discoveries made later by Wiener and Markov, and outlined the im-
portance of such ideas in today’s financial markets, stating that "it is evident that the
present theory solves the majority of problems in the study of speculation by the calculus
of probability."

Seventy three years before Black and Scholes wrote their famous paper [Black and
Scholes, 1973], Bachelier derived the price of an option where the share price movement is
modelled by a Wiener process and derived the price of what is now called a barrier option
(namely, the option which depends on whether the share price crosses a barrier). Black,
Scholes and Morton, following the ideas of Osborne [1959, 1977] and Samuelson [1973],
modelled the share price as a stochastic process known as a geometric Brownian motion
(with drift). Fisher Black, Myron S. Scholes, and Robert C. Merton extended the theory
into a methodology for virtually zero risk option and derivative pricing, and established
the isomorphism between the standard deviation of the fluctuations in price of a financial
instrument, and investment risk.

A modern version of Bachelier’s theory is routinely used in financial literature. This
theory predicts a Gaussian probability distribution for stock-price fluctuations.

The random walk hypothesis, with independent and identically distributed increments,
is the basis of the Efficient Market Hypothesis [Fama, 1970]. It states, in simple words,
that: the price variation is random as a result of the activity of the traders who attempt to
make profit (arbitrage opportunities); the application of their strategies induces a feedback
dynamic in the market randomising the stock-price.

23



1. Introduction

In the 50’s, Hurst, while analysing hydrological flows, proposed a single exponent to
characterise time variation. As can be seen in Chapter 2 this approach is a generalisation
of Brownian motion later called fractional Brownian motion [Mandelbrot and Van Ness,
1968], and is characterised by a single exponent, later called Hurst exponent.

Fat tails

In the 60’s, Mandelbrot [1963], pointed out that the distributions of price differences are
not Gaussian due to the so called fat-tails. Mandelbrot formulated a theory of price
fluctuations in speculative markets based on the probability distributions discovered by
the French mathematician Paul Lévy. As pointed out by Mandelbrot, the so-called log-
normal distribution is of interest in finance, since wealth in a multi-agent system evolves
into a log-normal distribution.

The Gaussian/Normal distribution is a special case of the more general Lévy distribu-
tions, and is often used as an approximation to log-normal distributions for mathematical
expediency. In contrast, these distributions display power-law decay in the tails and this
is related to the fractal nature of financial data, where uni-fractal processes, such as frac-
tional Brownian motion [Bouchaud and Potters, 2001, Mantegna and Stanley, 2000] have
been discussed in the literature for some years and, more recently, simple multi-fractal
processes have been considered for financial data from various sources [Lux, 2004].

In problems with similar data features [Peng et al., 1994] while studying DNA patterns
and their characteristics, introduced Detrended Fluctuation Analysis (DFA) as a method
to estimate the Hurst exponent.

Entropy

The early notion of entropy as a measure of disorder comes from the work of Claussius in
the 19th century, where entropy provides a way to state the second law of Thermodynamics
(as well as a definition of temperature). Boltzman extended the idea further giving it a
central role in statistical physics. Here, entropy is a measure of system multiplicity and
can be visualised in terms of disorder.

Shannon [1948] gave a new meaning to entropy in the context of Information Theory,
relating entropy with the absence/presence of information in a given message.

Entropy, one of the early ideas behind thermodynamics that later led the way to the
emergence of statistical physics, has been shown to be pervasive and, perhaps surprisingly,
well suited to crossing disciplinary boundaries (to pure mathematics), giving an easier
interpretation to the previously defined concept of topological entropy. The influence of
thermodynamics was such that it lent its name to the thermodynamical formalism by
Bowen and Ruelle.

The theoretical concept proves to be rich and active as demonstrated in the late 80’s
when Tsallis [1988b] introduced the concept of non-extensive entropy, generalising further
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the “traditional” concept of entropy.

1.2. Overview and structure of the thesis

The main focus of this thesis is placed on entropy measures for the following reasons:

1. they allow us to predict how the market will evolve;

2. they add to the portfolio of techniques used to study time series;

3. they allow us to characterise the specific features of each market;

4. they are measures of how markets perceive risk.

Each technique captures different nuances of the signal evolution. The use of different
tools at the same times allow us to have more confidence in the obtained results, avoiding
the several pitfalls of using a single technique.

The work carries several types of analyses/tools, entropy, time and scale dependency of
the Hurst exponent, as well as correlation matrix analysis between different markets.

All analyses were performed on daily data from worldwide indices. The daily indices
were used as benchmarks for the different markets studied. Only market indices were used
but it should be noted that the same techniques apply to other type of financial assets
data.

This thesis is divided into three parts. The methods, used in this work, are established
in Chapters 2 and 3, which are applied in Chapters 4, 5 and 6. The conclusions are draw
in Chapter 7.

Chapter 2 details most of the mathematical tools applied in the work. Here, we present
wavelets, fractals, multifractals, fractional Brownian motion, statistical stable laws, en-
tropy and time dependent correlation matrices.

In Chapter 3 the computational methodology used in this work is presented. This
unusual layout comes from the author’s personal opinion that computational methods
deserve a special treatment on same level as the theoretical methods. A strong stance
on Free Software is explained there. The use of free software in scientific computing is
discussed, and examples of that usage are presented. Free software encourages cooperation
in a way similar to scientific method. Several contributions of the author to major free
software projects are stated in the last Section.

PSI-20 (Portuguese Stock Index - 20) is studied in Chapter 4 where an empirical study
of the property of its return is made. The outcome of those results is compared with some
simple models and their expected values.

A new method is proposed in Chapter 5 to characterise the different markets. This
method extends the DFA over time and scale domains, instead of a single global index.
To characterise the time series, we use Hurst exponents coming from DFA as a local
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measure of fractional Brownian motion (fBm) behaviour and thus as a local measure of
uncertainty both in time and scale. The variation of this across time and scale gives an
indication of market reaction both to internal fluctuation as well as to external influences.
This behaviour allows a better understanding of each market feature and, when used in
comparison with other markets, allows a classification scheme for different markets.

Entropy measures are used in comparison with the correlation matrix as a way to show
differences and similarities between markets in Chapter 6. The entropy measures used
here are entropy as defined by the method developed in Chapter 5.

Finally in Chapter 7 we have the conclusions taken from this work.
In order to help the reading of this work some subjects interesting but not fundamental

to the understanding of this thesis have been placed in Appendices.
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"The scientist does not study nature because it is useful to do so. He studies
it because he takes pleasure in it, and he takes pleasure in it because it is
beautiful. If nature were not beautiful it would not be worth knowing, and life
would not be worth living. I am not speaking, of course, of the beauty which
strikes the senses, of the beauty of qualities and appearances. I am far from
despising this, but it has nothing to do with science. What I mean is that more
intimate beauty which comes from the harmonious order of its parts, and which
a pure intelligence can grasp." - Henri Poincaré

2.1. Time series tools overview

In this Chapter we present and define, with mathematical rigour, most of the tools used
in this work. Since we are interested in the study of financial time series we start with
stochastic processes, firstly developed in the scope of statistical physics. Basic mathemat-
ical definitions include that for the Fourier transform and for the fractal dimension. The
minimal assumption here is a knowledge of measure theory. Advancing in complexity, we
introduce: multifractals; wavelets; stable laws (Lévy distributions); fractional Brownian
motion; entropy and time dependent correlation matrices.

The purpose of the Chapter is to explain the relation between these different tools as
well as to illustrate each mathematical tool with available free software. Example code
is referenced and appears in either Appendix C or Appendix D depending if it was made
during this work or if it was used from external sources.

2.2. Stochastic processes

The theory of Stochastic Processes is generally defined as the "dynamic" part of probability
theory, where we study a collection of random variables, (called a stochastic process),
from the point of view of their interdependence and limiting behaviour. We can apply
a stochastic process whenever we have a process developing in time and controlled by
probabilistic laws [Parzen, 1999]. In this context, it is interesting to note that many
elements of the theory of stochastic processes, were first developed in connection with the
study of fluctuation and noise in physical systems and financial data (Bachelier [1900],
Einstein [1905]).
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All the stochastic processes that will be considered in this work are time series. The
notation used in this section is well known and is essentially the same as that used in
Papoulis [1985].

2.2.1. Random variable measures

The expression random variable is a misnomer and an historical accident, as a random
variable is not a variable, but rather a function that maps events to numbers.

Definition 2.2.1. Let A be a σ-algebra and Ω the space of events relative to the exper-
iment. A function X : (Ω,A) → R is a random variable if for every subset Ar = {ω :
X(ω) ≤ r}, r ∈ R, the condition Ar ∈ A is satisfied. A random variable X is said to be
discrete if the set {X(ω) : ω ∈ Ω} (i.e. the range of X) is countable. A random variable
Y is said to be continuous if it has a cumulative distribution function which is absolutely
continuous.

One useful definition is the expected value of a random variable, in a sense what we
should expect if we have a repeated process. The expected value gives us the average of
repeated measurements.

Definition 2.2.2. Consider a discrete random variable X. The expected value, or expec-
tation, of X, denoted E{X}, is the weighted average of all possible values of X by their
corresponding probabilities, i.e. E{X} =

∑
x

xfX(x) (fX(x) is the probability function

of X). If X is a continuous random variable, then E{X} =
∫
x xfX(x)dx (fX(x) is the

probability density function of X).

Note that if the corresponding sum or integral does not converge, the expectation does
not exist. One example of this situation is the Cauchy random variable.

Definition 2.2.3. Let X and Y be two random variables, then the covariance of X and
Y is

CX,Y = E{(X − E{X})(Y − E{Y })}. (2.1)

If X = Y then we get the variance of X:

V arX = CX,X . (2.2)

The standard deviation of the random variable X is the square root of variance

σX =
√
V arX . (2.3)

Definition 2.2.4. The correlation coefficient of two random variables X and Y is

rX,Y =
CX,Y

σXσY
. (2.4)
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2.2.2. Stochastic processes

Definition 2.2.5. Let (Ω,F ,P) be a probability space. A stochastic process is a collection
{X(t) | t ∈ T} of random variables X(t) defined on (Ω,F ,P), where T is a set, called the
index set of the process. T is usually (but not always) a subset of R. One can also think of
a stochastic process as a function X = (X(t, ω)) in two variables: t ∈ T and ω ∈ Ω, such
that for each t, Xt(ω) : = X(t, ω) is a random variable on (Ω,F ,P). Given any t, the
possible values of X(t) are called the states of the process at t. The set of all states (for
all t) of a stochastic process is called its state space. If T is discrete, then the stochastic
process is a discrete-time process. If T is an interval of R, then {X(t) | t ∈ T} is a
continuous-time process. If T can be linearly ordered, then t is also known as the time.

Let X(t) and Y (t) be stochastic processes, with t ∈ T and T being the index set.

Definition 2.2.6. The mean η(t) of X(t) is the expected value of the random variable
X(t)

ηX(t) = E{X(t)}. (2.5)

Definition 2.2.7. The cross-correlation of two processes X(t) and Y (t) is

RXY (t1, t2) = E{X(t1)Y (t2)}. (2.6)

Definition 2.2.8. The autocorrelation R(t1, t2) of X(t) is the expect value of the product
X(t1)X(t2)

R(t1, t2) = E{X(t1)X(t2)}. (2.7)

Definition 2.2.9. The cross-covariance of two processes X(t) and Y (t) is

CXY (t1, t2) = E{X(t1)Y (t2)} − ηX(t1)ηY (t2). (2.8)

Definition 2.2.10. The autocovariance C(t1, t2) of X(t) is the covariance of the random
variables X(t1) and X(t2)

C(t1, t2) = R(t1, t2)− η(t1)η(t2). (2.9)

Definition 2.2.11. The ratio

r(t1, t2) =
C(t1, t2)√

C(t1, t1)C(t2, t2)
(2.10)

is the correlation coefficient of the process X(t).

2.2.3. Computational implementation

Most of the data analysis made in this work was done through a Python module described
in Appendix C. The sub-module tools provides the basic statistical tools for time series
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analysis.

2.3. Fourier transform

The use of Fourier transforms in this work is indirect. Rather than using them to analyse
financial time series by decomposition of the series into several components with different
amplitudes and frequencies, we rely on analytical properties to develop or explain methods
and tools presented later.

The useful properties of Fourier transforms referred above are:

• Fourier transforms are linear operators and, with proper normalisation, are unitary
as well (a property known as Parseval’s theorem);

• the transforms are invertible, and in fact the inverse transform has almost the same
form as the forward transform;

• the sinusoidal basis functions are eigenfunctions of differentiation, which means that
this representation transforms linear differential equations with constant coefficients
into ordinary algebraic ones;

• by the convolution theorem, Fourier transforms turn the complicated convolution
operation into simple multiplication, which means that they provide an efficient way
to compute convolution-based operations such as polynomial multiplication.

Definition 2.3.1. We define the Lp(R) space as the set of real functions such that∫
R
|f(t)|pdt < +∞. (2.11)

Definition 2.3.2. The Fourier transform of function f(x) is defined as (z ∈ C)

f̂(z) =
∫

R
eizxf(x)dx. (2.12)

The Fourier transform exists if f is Lebesgue integrable on the whole real axis.

Definition 2.3.3. The inverse Fourier transform is defined as

f(x) =
1
2π

∫
R
e−izxf̂(z)dz. (2.13)

If f is Lebesgue integrable and can be divided into a finite number of continuous,
monotone functions and at every point both one-sided limits exist, the Fourier transform
can be inverted.

If f(x) is a probability distribution we call its Fourier transform the characteristic
function of f(x).

One other definition used in several scientific areas is the dot product between functions.
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Definition 2.3.4. Let f and g be two real functions, then we define the dot product as

< f, g >=
∫
f(t)g(t)dt. (2.14)

Notice that this equality defines equivalence classes.

Definition 2.3.5. It is usual to define the energy of a signal as∫
R
|f(t)|2dt. (2.15)

2.3.1. Computational implementation

The discrete version of the Fourier transform can be evaluated quickly on computers using
fast Fourier transform (FFT) algorithms [Cooley and Tukey, 1965]. The computational
implementation used is FFTW (see Appendix D for further details).

2.4. Wavelets

2.4.1. Introduction and motivation

Wavelets are a topic, developed essentially in the last twenty years (see Kaiser [1994], Bur-
rus et al. [1998], Ueda and Loadha [1995], Graps [1995], Valens [1999]). Instead of focusing
solely on time dependency, this is a method that highlights also the scale dependency (scale
is the inverse of frequency, as seen also in Fourier transforms).

For examples of the use of wavelets in econophysics, applied to financial time series, see
Vuorenmaa [2005], Bartolozzi et al. [2006] and Sharkasi et al. [2006a].

In theoretical terms wavelets constitute a basis for a functional space, using as a seed
a single function (that, as we will see, has special properties). On the practical side they
have shown to be numerically suitable due to several algorithms whose complexity time is
on the same order as FFT.

Traditional signal analysis, (Fourier transform based), does not indicate when an “event”
occurs (e.g. trends or abrupt changes). There is a lack of temporal resolution. The
“time/frequency” aspect of wavelets permits us to gain information about frequency com-
position of the signal at a particular time. Fourier analysis does not work well on dis-
continuous, “bursty” data, while wavelets work well with discontinuous data and perform
well when applied to non-stationary data.

Comparing Fourier and wavelets we have:

31



2. Mathematical Tools

Fourier

• looses time (location) coordinate
completely

• Analyses the whole signal

• Short pieces loose “frequency”
meaning

Wavelets

• Localised time-frequency analysis

• Short signal pieces also have signif-
icance

• Scale = Frequency band

It should be said that wavelets are not the only technique using a time and scale ap-
proach. Some other methods [Carvalho, 2000] include short-time Fourier windows trans-
form (Windowed Fourier transform), Gabor transform and Wiegner distribution for time-
frequency analysis.

Due to these strengths, wavelets have been applied in different fields and to different
applications. In a number of cases the method has assumed the role formerly taken by
Fourier transforms. Application of wavelets analysis include some discussed here: multi-
fractals and Hölder exponents, stable laws, fractional Brownian motion [Doukhan et al.,
2003].

The duality concept referred to in this approach is related to the fundamental nature of
the wavelets: its simultaneous analysis of frequency and time. This duality is also related
to the synthesis and analysis involved (i.e. construction and deconstruction of wavelets).

2.4.2. Continuous wavelet transform

Wavelets can be used to analyse functions in L2(R) (the space of Lebesgue absolutely
square integrable functions defined on the real numbers to the complex numbers) in much
the same way the complex exponentials are used in the Fourier transform, but wavelets
offer the advantage of not only describing the frequency content of a function, but also
providing information on the time localisation of that frequency content. We are not
restricted to a single function as the basis as it happens for Fourier Transforms.

We introduce the wavelets through the continuous wavelet transforms and from there
develop the properties required for the wavelets. We start with a real function ψ, called
the mother wavelet, and from there we build a family of functions

ψs,τ (t) =
1√
s
ψ(
t− τ

s
), (2.16)

where s is the scale and τ is the translation. The new functions are then rescaled and
translated versions of the original. The factor s−1/2 is for energy normalisation across
different scales, so that ‖ψs,τ‖ = ‖ψ‖ = 1.

Definition 2.4.1. The continuous wavelet transform of a real function f , over the wavelet
family ψs,τ , is given by

γ(s, τ) =< f, ψs,τ > . (2.17)
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Definition 2.4.2. The inverse continuous wavelet transform, the inverse of last definition
is given by

f(t) =
∫ ∫

γ(s, τ)ψs,τ (t) dτds. (2.18)

Such as it were given this definitions are broad and not generally useful. We present
below the properties that give a meaning to the above definitions and at the same time
define some of the wavelets unique properties.

To guarantee the existence of the inverse we must require the admissibility condition∫
|ψ̂(ω)|2

|ω|
dω < +∞. (2.19)

This condition allows to reconstruct the signal without loss of information. From this
condition we get immediately that ψ̂(0) = 0, i.e.

∫
ψ(t) = 0. We see then that ψ(t)

behaves like a wave.
The other requirement comes from the time location, to get this behaviour we demand

the function to decay quickly in the scale dependency. This is called the regularity condi-
tion.

Performing a Taylor expansion, of degree n in s, around τ = 0 for γ we have

γ(s, 0) =
1√
s

 n∑
p=0

f (p)(0)
∫
tp

p!
ψ(
t

s
))dt+O(sn+1)

 . (2.20)

Let Mp be the moments of ψ, i.e.

Mp =
∫
tpψ(t)dt. (2.21)

We have M0 = 0, due to the admissibility condition. Replacing the expression for
moments in the Taylor expansion we get

γ(s, 0) =
1√
s

 n∑
p=0

Mp
f (p)(0)
p!

sp+1 +O(sn+2)

 (2.22)

If we use further vanishing moments, M1 = · · · = Mn = 0, then γ(s, τ) will decay as
fast as sn+2 for a smooth signal f(t).

We can resume this saying that the admissibility condition gives us the wave and the
regularity condition brings the let, thus having wavelet.

2.4.3. Discrete wavelets

The continuous wavelet transform was interesting since it allowed to expand on the prop-
erties of wavelets, but it presents some inconveniences: redundancy of ψs,τ (t), s and τ

are continuous coefficients; it would be interesting like in the Fourier transform to get a
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more manageable number of base functions; and it is difficulty in practice to get a closed
formula for f(t).

To overcome this we discretise the scale and the translations, using minimum s0 and τ0.
We define now the wavelets as a countable family of functions, using as a seed the mother
wavelet as above.

Definition 2.4.3. A (more properly, an orthonormal dyadic) wavelet is a function ψ(t) ∈
L2(R) such that the family of functions ψjk ≡ 2j/2ψ(2jt− k), where j, k ∈ Z, is an or-
thonormal basis in the Hilbert space L2(R).

The scaling factor of 2j/2 ensures that ||ψj,k|| = ||ψ|| = 1. These type of wavelets, (the
most popular), are known as dyadic wavelets because the scaling factor is a power of 2.

The wavelet series decomposition gives us a series of numbers that corresponds to the
coefficient of each wavelet.

Definition 2.4.4. The continuous wavelet transform of a real function f , over the wavelet
family ψj,k, is given by

γ(j, k) =< f, ψj,k > . (2.23)

The condition for reconstruction is that the energy of the wavelet must lie between two
positive bounds

A||f ||2 ≤
∑
j,k

| < f, ψj,k > |2 ≤ B||f ||2, (2.24)

where A > 0 and B < +∞.
If 2.24 is satisfied we call{ψj,k(t) : j, k ∈ Z} a frame with bounds A and B. When

A = B the frame is “tight” and the discrete wavelets behave like an orthonormal basis.
Again this is similar to what we get with the Discrete Fourier Transform (DFT).

By properly choosing the mother wavelet, < ψj,k, ψm,n >= δj,kδm,n, where δj,k is the
delta of Dirac.

The reconstruction formula is now a double sum

f(t) =
∑
j,k

γ(j, k)ψj,k(t). (2.25)

2.4.3.1. Filter band coding

We have progressed from the continuous wavelets transforms, but we still need an infinite
number of scalings and translations to calculate the wavelet transform. Is it possible to
reduce the number of wavelets to analyse a signal and still have a useful result?

At this point Fourier transforms give an interesting interpretation to wavelets, we could
look at ψ̂(0) = 0 as a band-pass like spectrum.

Fourier transform property for a scaling is

f̂(at) =
1
|a|
f̂(
ω

a
). (2.26)
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The time compression of the wavelet by a factor of 2 will stretch the frequency spectrum
of the wavelet by a factor of 2 and also shift all frequency components the same factor.
We can cover the finite spectrum of our signal with the spectra of dilated wavelets in the
same way we covered our signal in continuous time with translated wavelets.

If one variable can be seen as a band-pass filter then a series of dilated wavelets can be
seen as a band pass filter bank. If the signal has a finite energy then it will have a finite
cover, this argument covers the high frequency limit, but for small frequencies we need to
stop somewhere. The threshold is then is a low-pass spectrum filter and it belongs to the
so called scaling function.

The scaling function is then

ϕ(t) =
∑
j,k

γ(j, k)ψj,k(t). (2.27)

If we analyse the signals as a combination of scaling functions and wavelets, the scal-
ing function takes care of the spectrum covered by the wavelet up to scale j, while the
remaining part is expressed by a finite number of coefficient of the wavelets.

The low-pass spectrum of the scaling function allows us to state an admissibility for
scaling functions ∫

ϕ(t)dt = 1. (2.28)

The sub-band coding we have been detailing is the basis for Mallat’s algorithm [Mallat,
1989a].

If we regard the wavelet transform as a filter bank, then we can consider the wavelet
transformation of signal as passing the signal through this filter bank. The output of
the different filter stages are the wavelet and scaling function transform coefficients. The
iterated filter bank has two passes: high pass, contains the finest details of interest (rapid
or short-term fluctuations); and a low pass; still contains some details and fine details may
further be extracted in another iteration.

The advantage of this scheme is that we have only two filters, the main disadvantage is
that the signal spectrum coverage is limited.

The wavelet transform is the same as a sub-band coding scheme using a constant-Q
filter bank. This kind of analysis is known as multi-resolution analysis [Mallat, 1989b].

2.4.4. Multi-Resolution analysis

Wavelets can be constructed from a multi-resolution analysis, define below. Here the ideas
presented before, as a motivation for wavelets, are given a new formulation.

Definition 2.4.5. An orthonormal Multi-Resolution Analysis (MRA) {(Vj), φ} is made
by a scaling function φ ∈ L2(R) and a sequence (Vj), j ∈ Z of closed subspaces of L2(R)
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such that:
· · · ⊂ V−1 ⊂ V0 ⊂ V1 ⊂ · · · (2.29)⋃

j∈Z
Vj = L2(R) (2.30)

⋂
j∈Z

Vj = {0} (2.31)

v(t) ∈ Vj ⇔ v(2t) ∈ Vj+1 (2.32)

{φ(t− k) : k ∈ Z} is an orthonormed base of V0 (2.33)

Observe that 2.29 tells that (Vj), j ∈ Z is a nested sequence of spaces, while 2.30 states
that we have a full closure of the functional space L2(R). The only common element
between all the sequence is the null function, according to 2.31. The scaling relation in
2.32 show that the functions from Vj+1 are scaled versions of Vj . Finally in 2.33 tells that
φ(t) and its translations form an orthonormed base of the space V0.

Using 2.32 and 2.33 we have that

φj,k(x) =
√

2jφ(2jx− k) j, k ∈ Z (2.34)

is a base of Vj . We can see that scaling and translations of φ(t) form an orthonormal basis
for every space of the collection (Vj).

If we define Pj as the orthogonal projection of f(t) ∈ L2(R) into subspace Vj

Pj(f(t)) =
∑
k∈Z

< f, φj,k > φj,k(t), (2.35)

we have thus a sequence of functions that approximates f(t) and such that:

lim
j→−∞

Pj(f(t)) = 0 (2.36)

lim
j→+∞

Pj(f(t)) = f(t) (2.37)

The projection coefficients, sj,k =< f, φj,k >, are called scaling coefficients.

2.4.4.1. Details

Instead of looking into the sequence (Vj), we can study another sequence (Wj) such that
Wj is the orthogonal complement of Vj with relation to Vj+1

Vj+1 = Vj

⊕
Wj , (2.38)

Vj ⊥ Wj . (2.39)
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The sequences (Wj) are the differences between each approximation level, they represent
the details (or “errors”) for each approximation. These detail spaces are orthogonal among
themselves Wj ⊥Wk, j 6= k. On the other hand the recursive definition allow us to have

Vj = Vi

⊕(
j⊕

k=i

Wk

)
. (2.40)

The relation 2.40 is important, even from piratical terms, we express a time series as
the sum of the a smooth part (Vi) plus the several details taken from Wk.

From 2.30 and 2.29 we have
L2(R) =

⊕
k∈Z

Wk. (2.41)

This property says that the reunion of the sequence (Wj) spans L2(R). Moreover prop-
erty 2.32 still applies in subspaces Wj , since they are contained inside Vj+1 where this
property is valid.

The most important result from MRA is the that given a scaling function φ(t) ∈ L2(R)
there is a function ψ(t) ∈ L2(t), with the same regularity and such that integer translations
generates a base of W0. This function ψ(t) is called wavelet.

Using 2.32 and 2.33 we get a family of functions

ψj,k(x) =
√

2jψ(2j − k) (2.42)

for each j which are an orthonormal base of Wj , and for all j and k an orthonormal base
of L2(R). This is the objective of MRA to obtain an orthonormal basis of L2(R) using a
single function, the scaling function φ.

2.4.4.2. Discrete wavelet transform

In practice we are interested in the different detail levels. Using equations 2.34, 2.35 and
2.42, we can express

f(t) = sj0(t) +
∑
j=j0

fj(t) (2.43)

where
sj0(t) =

∑
k

cj0(k)φj0,k(t), (2.44)

and
fj(t) =

∑
k

dj(k)ψj,k(t). (2.45)

If the wavelet system is orthogonal, we obtain:

cj0(k) =< f(t), φj0,k(t) >, (2.46)
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and
dj(k) =< f(t), ψj,k(t) > . (2.47)

In equation 2.43 we have decomposed the original function into a smooth part and a
sum of details.

2.4.5. Examples

There are different families of wavelets, one of the distinctive behaviour inside each family
is the degree of the vanishing moments. Depending on the properties desired so we can
choose the scaling function. Continuity is not a requirement and some wavelets families
are (piecewise) continuous functions.

Examples of wavelets families include Haar, Daubechies and general order B-spline, (see
in [Ueda and Loadha, 1995, Burrus et al., 1998]).

The software used in this work related with wavelets is described in Appendix D.

2.5. Fractal dimension

One other tool used in the study of financial time series is the fractal dimension. Fractals,
so named by Mandelbrot [1977, 1982], were known long before the term was coined.
Initially looked upon with suspicion and considered mathematical toys, they have since
been found to occur everywhere, (to the point where the exceptions are the non-fractal
objects).

The following definitions can be found on Falconer [1985].

Definition 2.5.1. Let A be a compact subset of the Euclidean space Rn. For ε > 0,
consider the subdivision of Rn into boxes or cubes of sides of length ε: for (j1, . . . , jn) ∈ Zn,
let

Rj1,...,jn = {(x1, . . . , xn) : jiε ≤ xi < (ji + 1)ε for 1 ≤ i ≤ n} . (2.48)

A box of this kind is said to be a box from the ε-grid. Let N(ε, A) be the number of
boxes Rj among all the choices of j ∈ Zn such that A∩Rj 6= ∅. The Minkowski-Bouligand
(or box dimension) of A is

dimb(A) = − lim
ε→0+

log(N(ε, A))
log(ε)

. (2.49)

Definition 2.5.2. The Hausdorff-Besicovitch dimension of an object E in a metric space
is given by the formula :

dimH(E) = − lim
δ→0+

logN(δ, E)
log δ

(2.50)
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2.5. Fractal dimension

Figure 2.1.: Sierpinski triangle

where

N(δ, E) = inf{N ∈ N : ∃(x1, . . . , xn) ∈ (Rd)N : E ⊂
N⋃

i=1

B(xi, δ)}.

Remark 2.5.3. For a compact set A ⊂ Rn,

dimH(A) ≤ dimb(A) ≤ n. (2.51)

This last inequality is important because computationally it is easier to evaluate the
box dimension, although usually we are interested in the Hausdorff dimension.

Technically, it should be remarked that these definitions also make sense in a metric
space. Since a manifold M can be embedded in some Euclidian space Rn, our definitions
apply to compact manifolds since we are talking about local properties characterising the
global structure.

Example 2.5.4. The setA = {1, 1/2, 1/3, 1/4, ..., 1/n, ...} has dimb(A) = 1
2 and dimH(A) =

0.

Example 2.5.5. Sierpinski triangle (Figure 2.1) has fractal dimension log2 3 ≈ 1.58.
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2.6. Multifractals

In financial data many records do not exhibit a simple monofractal scaling behaviour,
which can be accounted for by a single exponent behaviour. The application of fractal
analysis to measure theory leads to multifractals [Peitgen et al., 1992]. We recover the
fractal dimension when studying the uniform distribution, as a special case.

Multifractal measures (first introduced in [Mandelbrot, 1972]) have been applied to
different fields to describe the distribution of energy, matter, turbulent dissipation, stellar
matter, minerals and financial returns [Mandelbrot et al., 1997]. Just like in practice where
we are only interested in finite measures, so all the measures considered in these sections
are finite.

Instead of having a single exponent to characterise the whole set (the fractal dimension)
multifractals require a function f(α) to characterise the distributions. The importance of
f(α) is reflected in the methods to evaluate f(α) numerically and its properties, presented
in the following.

2.6.1. Multifractal measure

Taking the previous example of the Sierpinski triangle, we can construct an example of
a multifractal measure. We use the same procedure as that used to obtain the original
fractal, where each of the three triangles is assigned a different weight in each iteration.
As an example the lower left triangle is set to 0.5, the lower right triangle to 0.2 and the
upper triangle to the remainder (0.3). Using this iterative scheme it is easy to see that
the mass is conserved, (so after each iteration the triangle’s mass will be the same). We
can consider the previous example (unifractal) as the degenerate case where each triangle
gets 1/3 of the total mass. The question then becomes how to characterise this kind of
structure?

If we take the box dimension this looks like counting coins regardless of their value.
In the unifractal case this was correct because each section had the same value, but here
coins are not uniform and we count by face value. We should note also that the Hausdorff
dimension will give the same (unifractal) result as before, because it does not take into
account the different weights.

Any characterisation that describes this type of complexity should consider the weight
of each setThe support of a measure is the set of points where the measure is positive..
With this restrictions the candidates are listed below:

Measure Density
µ(S)
εE

Here E is the Euclidean dimension of the embedding space, µ is the measure and ε

is the size of the ball containing set S. The problem with this approach is the fact
that multifractal measures are singular hence the results will be either 0 or +∞.
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a) First iteration

0.25 0.1
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b) second iteration

Figure 2.2.: Multifractal Sierpinski measure (first two iterations)

Local Hölder exponent

α(x) = lim
ε→0+

logµ(Bx(ε))
log ε

(2.52)

in most cases we can not take the limit, as it does not exists (x is in the support of
the measure, to avoid evaluating log(0)).

“Coarse-grained” Hölder exponent

α =
logµ(box)

log ε
(2.53)

This apply to any finite set, and 0 ≤ αmin ≤ α ≤ αmax ≤ ∞.

All the previous candidates measure a local quantity and we would like to have a global
quantity to characterise the measure. The choice goes to the “Coarse-grained” Hölder
exponent, where we define a structure that rates the importance of exponent α in the
measure.

Definition 2.6.1. Let Nε(α) be the number of boxes with size ε with Hölder exponent
equal to α, then we define

f(α) = − lim
ε→0+

logNε(α)
log ε

. (2.54)

We can understand f(α) as the fractal dimension of the subset of boxes of size ε having
coarse-grained Hölder exponent α in the limit ε→ 0. The fractal dimension referred here
is Hausdorff, not box-counting.

2.6.2. Multifractal spectrum calculation

The multifractal spectrum is not of much use if it can not be calculated. For some type of
measures (binomial and multinomial, see Peitgen et al. [1992]) an analytical calculation is
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possible but for most of the practical cases, (financial data being the one we are interested
here), that is not possible.

In what follows we describe the different ways of how we can evaluate numerically the
multifractal spectrum. The best known reference to the methods presented here is Halsey
et al. [1986].

2.6.2.1. Histogram method

The algorithm of the histogram method is as follows:

1. Coarse-grain the measure with boxes of size ε, {Bi(ε)}N(ε)
i=1 , where N(ε) is the total

number of boxes needed to cover the support of measure µ.

2. For a given ε evaluate the weight of box i, µi = µ(Bi) → αi = log µi

log ε , where αi is the
coarse-grained Hölder exponent for box i.

3. Construct the histogram of α to estimate Nε(α)

4. Repeat 3 for different coarse-grained values of ε.

5. Since we expect Nε(α) ∼ ε−f(α), plot − log Nε(α)
log ε versus α for different values of ε.

This method suggests that a measure is multifractal when the resulting plots collapse onto
a curve f(α) if ε is small enough.

We can have some convergence problems here, there are self-similar measures [Man-
delbrot, 1990] for which the collapse to a function f(α) is extremely slow, and largely
irrelevant for any physically meaningful ε.

A practical application of this method can be seen in Matos and Duarte [1999].

2.6.2.2. Method of moments

Definition 2.6.2. For a given measure µ we define the partition function as the quantity

χq(ε) =
N(ε)∑
i=1

µq
i , q ∈ R (2.55)

where N(ε) is the number of boxes of size ε needed to cover the support of measureµ.

Another quantity that can be defined, using the analogy from thermodynamics, is the
free energy.

Definition 2.6.3. For a given measure µ we define the free energy as

τ(q) = lim
ε→0+

log
∑N(ε)

i=1 µq
i

log ε
. (2.56)
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The purpose now is to show that most of the contributions to the partition function can
be (mostly) attributed to a single value of α.

If we consider Nε(α)dα as the number of boxes with Hölder coarse-grained exponent
between α and α+ dα we can replace the sum by an integral

χq(ε) =
∫
Nε(α) (εα)q dα. (2.57)

If Nε(α) ∼ ε−f(α) then we get

χq(ε) =
∫
εαq−f(α)dα (2.58)

In the limit ε→ 0+ the dominant contribution of the integral comes from the α’s closes
to the value that minimises αq − f(α). If f(α) is differentiable the minimum α = α(q)
satisfies ∂f(α)

∂α

∣∣∣ α=α(q) = q and ∂2f(α)
∂α2

∣∣∣ α=α(q) < 0.

Considering τ(q) = qα(q) − f(α(q)) we get χq(ε) = ετ(q). We can interpret τ(q), the
free energy, as the scaling behaviour of the partition function.

The algorithm used to compute the spectrum is thus the following:

1. Coarse-grain the measure with boxes of size ε, {Bi(ε)}N(ε)
i=1 , where N(ε) is the total

number of boxes needed to cover the support of measure µ.

2. Compute χε(q) for various values of ε.

3. Plot logχε(q) vs ε and check that they are straight lines. If so τ(q) is the slope of
the corresponding line.

4. Form f(α) by computing the Legendre transform of τ(q)

As compared with other methods this converges faster. One of the drawbacks of these
methods is that there are self-similar measures which do not have all the moments, say
for q < 0.

2.6.3. Properties of f(α)

Using the definition 2.54 we can obtain the properties of f(α).

Definition 2.6.4. Let Aα(ε) be the subset of boxes covering the support of the measure
having a coarse Hölder exponent between α and α+ dα.

From equation 2.54 we get that

µ(Aα(ε)) = Nε(α)εαdα ∼ εα−f(α). (2.59)

From this we get f(α) ≤ α, if not the measure would diverge.
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Another important property is that f(α) intercepts α and since f(α) is convex this is a
single point and corresponds to q = 1, where f ′(α) = 1. This corresponds to q = 1, (the
moment of order 1), and this value is denoted by α(1) or α1.

The subset of boxes Aα1(ε) carries all the measure in the limit ε→ 0+, i.e., µ(Aα1(ε)) →
1 for ε→ 0.

We have then that ∂
∂q τ(q) = α(q), and f(α) = qα(q) − τ(q), where τ(q) and f(α) are

Legendre transforms. Both are strictly cap convex:

α(q) = lim
ε→0+

∑N(ε)
i=1

µq
iP

j=1 µq
j
logµi

log ε
, (2.60)

α(1) = f(α(1)) = lim
ε→0+

∑N(ε)
i=1 µi logµi

log ε
. (2.61)

α(q) is a decreasing function of q, αmin = α(+∞) and αmax = α(−∞).
The function τ(q) = (q−1)Dq, where Dq are the generalised dimensions, the most know

cases are: D0 is the fractal dimension; D1 is the information dimension and D2 is the
correlation dimension.

2.6.4. Multifractal stochastic processes

We can take the method of moments and apply it to time series, we can then define
stochastic multifractal processes, see [Mandelbrot et al., 1997, Calvet and Fisher, 2002].

Definition 2.6.5. A stochastic process {X(t)} on an interval T 3 0 of positive length is
called multifractal if it has stationary increments and there exists an interval Q ⊂ [0, 1]
and functions τ and c on Q such that

E {|X(t)|q} = c(q)tτ(q)+1 (2.62)

for all q ∈ Q.

2.7. Fractional Brownian motion

In what follows let us assume that X(t) is a time series.

Definition 2.7.1. Fractional Brownian motion (fBm) [Doukhan et al., 2003] is a well-
known stochastic process where the second order moments of the increments scale as

E{(X(t2)−X(t1))
2} ∝ |t2 − t1|2H (2.63)

with H ∈ [0, 1]. The Brownian motion is then the particular case where H = 1/2.
The exponent H is called the Hurst exponent. If H < 1/2, then the behaviour is anti-

persistent, that is, deviations of one sign are generally followed by deviations with the
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opposite sign. The limiting case H = 0, corresponds to white noise, where fluctuations at
all frequencies are equally present.

If H > 1/2, then the behaviour is persistent (smooth), i.e., deviations tend to keep the
same sign. The limiting case H = 1, reflects X(t) ∝ t, a smooth signal.

While motivation for fBm was the fat-tail characteristic of real price distributions [Man-
delbrot, 1963], this H−threshold for persistent/anti-persistent behaviour is useful in terms
of determining when trends break down.

In what follows of this Section we will study methods to estimate the Hurst exponent.
For a survey of fBm generators see Bardet et al. [2003].

2.7.1. Rescaled range (R/S) calculation

An illustration of the use of Hurst measurements may be draw from the 1950’s where these
were first developed to explain the flow of the Nile river, calculated by the (traditional)
rescaled range approach,[Hurst, 1951].

Given a series X(i), i = 1, .., n where n is the length of the series, classical R/S is
defined as Rn/Sn where

Rn = max
1≤i≤n

k∑
i=1

(X(i)−X)− min
1≤i≤n

k∑
i=1

(X(i)−X), (2.64)

Sn =
1
n

n∑
j=1

(X(j)−X)2. (2.65)

Hurst found that, for his time series and the case of the Nile river flow, Rn/Sn = knH ,
where k is a constant and H the Hurst exponent. Using a linear least squares fit, with
y = logRn/Sn as a function of x = log n, we obtain the Hurst exponent as the slope of
the resulting graphic.

One advantage of this method is its easy interpretation, since by considering the differ-
ence between the minimum and maximum of the deviations we obtain measure of vari-
ability in the time series. It should also be noted that the numerical implementation is
straightforward. One of the main problems with this method, however is that the dis-
tribution of its test statistics is not well defined, making application of hypothesis tests
for statistical confidence results difficult. Other serious issues include sensitivity to short
range dependence and to heterogeneity of the data series.

2.7.1.1. Modified R/S statistics and other improvements

The dependency of the original method on maximum and minimum data makes it very
sensitive to outliers; this is an important weakness. In order to overcome the deficiencies
of the initial method several improvements were proposed with the most important due
to Lo [1991].
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The formulation of time series using fBm’s, therefore with properties described by Hurst
exponents, has been used in a number of different areas. One of the consequences has
been the study of the Hurst itself and proposals for alternative methods of computing the
exponent. Some examples of this are Higushi [1988], DePetrillo et al. [1999], Chang and
Chang [2002].

In the remainder of this section, we explore those methods for evaluating the Hurst
exponent frequently used in econophysics papers.

2.7.2. Detrended fluctuation analysis (DFA)

The DFA technique consists in dividing a random variable sequence X(n), of length N,

into N/t non-overlapping boxes, each containing t points [Peng et al., 1994]. Then, the
linear local trend z(n) = an + b in each box is defined to be the standard linear least-
square fit of the data points in that box. The detrended fluctuation function F is then
defined by:

F 2(k, t) =
1
t

(k+1)t∑
n=kt+1

|X(n)− z(n)|2 , k = 0, · · · , N
t
− 1. (2.66)

Averaging F (k, t) over the N/t intervals gives fluctuation average F (t) as a function of
t

F (t) =

N
t
−1∑

k=0

F 2(k, t)

 .1/2 (2.67)

If the observables X(n) are random uncorrelated variables or short-range correlated
variables, the behaviour is expected therefore to be a power law

F (t) ∼ tH , (2.68)

where H is the Hurst exponent.
DFA has the advantage over standard variance analysis of being able to detect long-

term dependence in non-stationary time series. Additionally, the advantages, compared
to other methods, of using DFA to compute H (for instance, the Fourier transform) are:

1. inherent trends are avoided at all t scales; since those trends are discarded by the
fluctuation function; for more details about the issue of trends and DFA see Hu et al.
[2001] and Kantelhardt et al. [2001];

2. local correlations can be easily probed, since we are detrending at a large range of
scales, see also Chen et al. [2002].

It should be noted that DFA is a crude measure, especially as it is sensitive to non-
normality of data. On a practical note it should be said that it is not enough to obtain
an exponent from the detrended function, but is necessary also to check the quality of the
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2.7. Fractional Brownian motion

fit. We have used the correlation coefficient (r) as a crude measure of the goodness of the
fit. All results showed a high value of r giving us some confidence in the results obtained
through DFA.

2.7.2.1. Computational implementation

The code used to implement DFA was the code available from the authors of the original
paper Peng et al. [1994]. This software is described in Appendix D.

During this work two other implementations were made, one using C for performance,
and another using Python in the sub-module dfa. Both implementations are described in
Appendix C.

2.7.3. Multifractal generalisations

The multifractal generalisation deals with the use of moments when determining the Hurst
exponent.

2.7.3.1. Multifractal DFA

One generalisation of DFA is MF-DFA where MF stands for multifractal [Kantelhardt
et al., 2002]. The determination is similar to that for DFA, but instead of taking into
account just the behaviour of F (t) we take into account its moments. If we use F (k, t) as
defined in equation 2.66 we generalise:

Fq(t) =

N
t
−1∑

k=0

F 2(k, t)q/2

 .1/q (2.69)

The new relation becomes then

Fq(t) ∼ th(q). (2.70)

We call function h(q) the generalised Hurst exponent.

2.7.3.2. Generalised Hurst exponent

In the same vein it is possible to extend the Hurst exponent to include the moments of
the increments for different scales as done in Di Matteo et al. [2005].

Let X(t) be a time series (with t = ν, 2ν, ..., kν, ..., T ), where τ is the time resolution
and T the observation period.

A multifractal generalisation of the Hurst approach should be associated with the scaling
behaviour of the statistically significant properties of the signal, since at all scales the
scaling behaves differently, with possible crossovers being present.
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Consequently we analyse the q−order moments of the distribution of increments which
provide a good characterisation of the statistical evolution of a stochastic variable X(t).
The qth moment is given by

Kq(τ) =
〈|X(t+ τ)−X(t)|q〉

〈|X(t)|q〉
(2.71)

where τ is a time interval and can vary as ν ≤ τ ≤ τmax < T .

The generalised Hurst exponent H(q) can be defined from the scaling behaviour of Kq(τ)
which can be assumed to be given by the relation

Kq(τ) ∼
(τ
ν

)qH(q)
(2.72)

Unifractal behaviour corresponds to the case where H(q) = H, i.e. constant and inde-
pendent of q. In the more general case the process is called multifractal or multi-scaling
and with exponents H(q) characterising the scaling of the different moments q.

Computational implementation The implementation of the multifractal Hurst exponent
is described in Appendix C, in the sub-module multifractal.

2.7.4. Using wavelets for H- estimation

We use the wavelet variance to evaluate the dependency of the variance on the studied
level. This can be done estimating the variance explained by the different wavelet level j,
for Hurst exponent estimation.

Recalling equation 2.43 we have decomposed a function into two components, a smooth
part plus the wavelet details. We estimate the Hurst exponent using the relation [Abry
and Veitch, 1998]:

log2(
1
nj

∑
k

|dj(k)|2) = (2
∧
H − 1) j +

∧
c (2.73)

where nj is the available number of wavelet coefficients at level j and
∧
c is a constant.

Computationally it is an easy task, since the wavelet decomposition packages described
in Appendix D give directly the coefficients dj(k).

2.8. Stable laws - Lévy distributions

From the several models used to characterise the market behaviour, Brownian motion was
the first [Bachelier, 1900]. Brownian motion has the property that the distribution of
increments has a finite variance, and that the increments are uncorrelated at successive
time steps.
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In order to account the fat tails of financial data, in last section, we have generalised
Brownian motion to fractional Brownian motion by dropping the second requirement, the
Independence of increments.

There is another way, proposed by Mandelbrot [1963], to explain the fat tails, where
the first requirement of Brownian motion, (finite variance of increments), does not hold
anymore. A more general class of distributions stable under convolutions is required, the
Lévy distributions. This stochastic process is called a Lévy flight, where the distribution
of increments follows a Lévy distribution.

The Lévy distributions satisfy the relation P(X > x) ∝ x−α. The scale invariance
property relates them clearly to fractals; this relation is further explored in Shlesinger
et al. [1993, 1995].

Again, as in fBm we recover the Normal distribution as the limit case, where α = 2,
and thus the Brownian motion is a special case of a Lévy flight.

An interesting fact is that the only stable continuous distributions under convolutions
are the Normal and the Lévy distributions with parameter α between 0 and 2.

Lévy flights imply that infinite variance, yet in practice all processes have finite variance
and scale invariance in a limited range [Cont et al., 1997]. In order to overcome these
deficiencies, truncated power laws and finite variance, a new generalisation was proposed,
a truncated Lévy flight [Mantegna and Stanley, 1994, Koponen, 1995, Bouchaud and
Potters, 2001].

Like fBm, Lévy stable laws have been applied in several areas, economics, finance,
engineering, analysis of network traffic, physics and astronomy, (see [Nolan, 2005] for a
detailed bibliography).

2.8.1. Stable distributions

In the introduction we referred stable distributions, here we make that concept accurate.
An important property of Normal distributions is their stability under addition, i.e. the

sum of two independent Normal distribution is Normal. If X is Normal then for X1, X2

independent copies ∀a, b ∈ R ∃c, d ∈ R:

aX1 + bX2
d= cX + d, (2.74)

where d= means equal in distribution, i.e. both expressions have the same probability law.
Now suppose that X ∼ N(µ, σ2). We have then that aX1 ∼ N(aµ, (aσ)2) and bX1 ∼

N(bµ, (bσ)2) are the terms on the left-hand side of 2.74 while the right hand side is
N(cµ + d, (cσ)2). By the addition rule for independent normal variables, we must have
c2 = a2 + b2 and d = (a + b − c)µ. In other words, what equation 2.74 says is that the
shape of Normal is preserved (up to scale and shift) under addition.

We can generalise this definition, that we have shown to hold for Normal distribution.
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Definition 2.8.1. A random variable X is stable or stable in the broad sense if for X1

and X2 independent copies of X and any positive constants a and b,

aX1 + bX2
d= cX + d, (2.75)

for some positive c and d ∈ R. The random variable is strictly stable or stable in the narrow
sense if the relations holds with d = 0 for all choices of a and b. A random variable is
symmetric stable if it is stable and is symmetric around 0, e.g. X d= −X.

Other than Normal, there are two other distributions with a close formula that satisfy
this definition. Those distribution are Lévy and Cauchy and are described in Appendix B.

It easy to generalise this definition to an equivalent version with a sum of any number
of distributions.

Definition 2.8.2. Non-degenerate X is stable if and only if for all n > 1, there exist
constants cn > 0 and dn ∈ R such that

X1 + · · ·Xn
d= cnX + dn, (2.76)

where X1, · · · , Xn are independent, identical copies of X. X is strictly stable if and only
if dn = 0 for all n.

Using the Generalised Central Limit Theorem [Nolan, 2006], we have yet another equiv-
alent definition that has the advantage of being parametrised.

Definition 2.8.3. A random variable X is stable if and only if X d= aZ + b, where Z is
a random variable with characteristic function

E[exp(iuZ)] =

exp(−|u|α(1− iβ tan πα
2 (signu)) α 6= 1

exp(−|u|α(1 + iβ 2
π (signu) log |u|) α = 1

(2.77)

and 0 < α ≤ 2, −1 ≤ β ≤ 1, a > 0, b ∈ R.

If β = 0 and b = 0 the characteristic function of aZ has a simpler form

φ(u) = e−aα|u|α . (2.78)

This definition gives an explicit (closed) formula for the Fourier transform of the distri-
butions. The only stable distributions that have a closed formula, are the Normal, Cauchy
and Lévy, with the parametrisation that follows:

• N(µ, σ2) is stable with (α = 2, β = 0, a = σ2/2, b = µ)

• Cauchy(γ, δ) is stable with (α = 1, β = 0, a = γ, b = δ)

• Lévy(γ, δ)is stable with (α = 1/2, β = 1, a = γ, b = δ)
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In Appendix B the different possible parametrisation of Lévy stable distributions are
studied. The existence of different parametrisation is both due to historical reasons and
to different purposes, analytical or numerical use. The parametrisation is important since
it allows us to interpret the different types of stable laws, as they are richer than to be
simply classified due to the exponent α. There are three further parameters necessary to
uniquely characterise each stable distribution and the general parametrisation is denoted
as S(α, β, γ, δ; k), where β is the asymmetry coefficient, γ is the scale coefficient, δ is the
location parameter and k the number of the parametrisation type.

2.8.2. Tail properties and moments

A general distribution is said to be heavy tailed if its tails behaviour are heavier than
exponential.

The initial interest of stable laws applied to financial problems was due to the heavy
tails of the distribution of price increments [Mandelbrot, 1963]. In the following we study
the analytical properties of the distributions that justify that interest.

Theorem 2.8.4. Tail approximation. Let Z ∼ S(α, β, γ, δ; k) with 0 < α < 2, −1 <
β ≤ 1. Then as x→ +∞,

P (X > x) ∼ γαcα(1 + β)x−α (2.79)

f(x|α, β; 0) ∼ −αγαcα(1 + β)x−(α+1) (2.80)

where cα = sin(πα/2)Γ(α)/π.

For all α < 2 and β > −1 the upper tails probabilities and densities are asymptotically
power laws. (Pareto tails)

For all α < 2, stable distributions have one or both tails that are asymptotically power
laws with heavy tails. One consequence of heavy tails is that not all moments exist.

Studying the moments for stable distributions we have that E[|X|p] is finite for 0 < p <

α and E[|X|p] = +∞ for p ≥ α. For all stable laws, with α < 2, the variance is infinite.
Thus the first moment E[X] and variance Var[X] do not characterise the distribution as
well as in other distributions.

2.8.3. Signal generation and analysis

Here the computational methods used to simulate and estimate the parameters for stable
laws are described.

For simulation we have used the GNU Scientific Library (GSL), described in Sec-
tion 3.4.1, that has two functions to generate Lévy symmetric stable distributions, one
for the symmetric and another for the skewed cases. They work by taking advantage of
equation 2.77, and then taking an inverse Fourier transform.
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The estimation of parameters it was used the software described in Appendix D, Sec-
tion D.4.2 using the Maximum Likewood Estimator for stable laws [Nolan, 2001].

2.9. Entropy

The definition of entropy is the following:

Definition 2.9.1. Let X be a discrete random variable on a finite set X = {x1, ..., xn},
with a probability distribution function p(x) = P(X = x). The entropy H(X) of X is
defined as

H(X) = −
∑
x∈X

p(x) log p(x). (2.81)

Note that here we are using H to represent the entropy while before it was used to
represent the Hurst exponent. Since both notations are traditional in their fields I opted
to keep them since most of the time there is no ambiguity on what is the quantity studied.

If we apply the previous definition to a continuous time series, e.g. financial, we have to
partition the signal into k symbols, in order to complete the partition we need to choose
the length of the words we will be using, say size m. The Shannon entropy for symbol
sequences, with an alphabet of k symbols and block length m, gets a particular form
[Kantz and Schreiber, 2004].

Before presenting the formula it is necessary a short introduction on how to code the
sequences. We have km possible sequences, we can associate any integer number j, such
that 0 ≤ j < km, with its digit representation on base k as j = (jm−1jm−2 . . . j1j0)k, where
each digit 0 ≤ ji < k for 0 ≤ i < m. We can then associate a probability pj to each of
these sequences.

Definition 2.9.2. The Shannon entropy for blocks of size m for an alphabet of k symbols
is

∼
H(m) = −

km−1∑
j=0

pj log pj , (2.82)

the entropy of the source is then

∼
h = lim

m→∞

∼
H(m)
m

. (2.83)

This definition is attractive for several reasons: it is easy to calculate and it is well
defined for a source of symbol strings. In the particular case of returns, if we choose
a symmetrical partition we know that half of the symbols represent losses and half of
the symbols represent gains. If the sequence is predictable, we have the same losses and
gains sequences repeated everytime, the entropy will be lower; if however all sequences are
equally probable the uncertainty will be higher and so it will be the entropy. Entropy is
thus a good measure of uncertainty.
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This particular method has problems, the entropy depends on the choice of encoding,
it is not a unique characteristic for the underlying continuous time series. Also since the
number of possible states grows exponentially with m, after a short number of sequences in
practical terms it will become difficult to find a sequence that repeats itself. This entropy
is not invariant under smooth coordinate changes, both in time and encoding. This is a
strong handicap for its adoption into financial time series study.

The entropy shows a different behaviour for odd and even k if we have a large bulk in
the centre of the distribution, as it usually happens for financial time series. Analysing the
histogram the reason is obvious the central bulge is covered by either one or two symbols,
depending on the parity of k. The sequence will have a smaller entropy for odd values of
k.

2.9.1. Order-q Rényi entropies

A series of entropy-like quantities, the order-q Rényi entropies Rényi [1961], characterise
the amount of information which is needed in order to specify the value of an observable
with a certain precision [Kantz and Schreiber, 2004].

Definition 2.9.3. Let Pε be a partition of disjoint boxes Pj , of size length ≤ ε, over the
support of measure µ. If we consider µ(Pj) = pj then

∼
Hq(Pε) =

1
1− q

log
∑

j

pq
j (2.84)

is the q-order Rényi entropy for the partition Pε.

Note for q = 1 we have to apply the de l’Hospital rule where we get

∼
H1(Pε) = −p

∑
j

pj log pj . (2.85)

∼
H1(Pε) is thus the Shannon entropy as defined in equation 2.81. In contrast to the other
Rényi entropies is additive, i.e. if the probabilities can be factorised into independent
factors, the entropy of the joint process is the sum of the entropies of the independent
processes.

Note that this generalisation of the entropy is closely related to the free energy function
within the multifractal analysis τ(q) = (1 − q)Dq. If we analyse equations 2.60 and 2.61
we see the same relation has we have between equation 2.84 and 2.85.

2.9.2. Kolmogorov-Sinai entropy

The Rényi entropies gain even more relevances when they are applied to transition prob-
abilities, equation 2.83. We apply the same reasoning as before, apply a partition Pε on
the dynamic range of the observable, and introduce the joint probability pi1,i2,...,im that at
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an arbitrary time n the observable falls into the interval Ii1 , at time n+1 fall into interval
Ii2 , and so on.

Definition 2.9.4. The block entropies of block size m is

Hq(m,Pε) =
1

1− q
log

∑
i1,i2,...,im

pq
i1,i2,...,im

. (2.86)

The order-q entropies are then

hq = sup
P

lim
m→∞

1
m
Hq(m,Pε) ⇔ hq = sup

P
lim

m→∞
hq(m,Pε), (2.87)

where
hq(m,Pε) := Hq(m+ 1,Pε)−Hq(m,Pε), hq(0,Pε) = Hq(0,Pε). (2.88)

In the original sense only h1was called the Kolmogorov-Sinai entropy [Kolmogorov, 1958,
Sinai, 1959], but since the idea is the same, the name was extended to cover all the other
Rényi entropies.

Kolmogorov and Sinai where the first to consider correlations in time in information
theory. The limit q → 0 gives the topological entropy h0. As D0, the fractal dimension of
the support of the measure, just counts the number of non-empty boxes in partition, h0

gives just a measure of the different orbits, not of their relative importance as we get with
h1.

Another extension of entropy, related with Rényi entropies, is Tsallis non extensive
entropy [Tsallis, 1988a], with applications to economics described in Tsallis et al. [2003].

2.9.3. Computational implementation

The implementation is described in Appendix C, in the Python sub-module entropy. The
package only implements Shannon entropy for blocks.

2.10. Time dependent covariance matrix

All the techniques used before dealt with a single time series. The time dependent covari-
ance matrix (see Litterman and Winkelmann [1998]) studies the multivariate case, (several
random variables at once).

One of the properties that this method shares with others used in this work is the time
dependent results that allows to compare with results obtained with other methods.

Definition 2.10.1. The covariance matrix with variable weights at time T , over an hori-
zon M , σT (M), is given by:

σT
ij(M) =

∑M
s=0Wsri,T−srj,T−s∑M

s=0Ws

. (2.89)
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Where ri,t is the value of return ri at time t, and Ws is the weight given for the covariance
at delay s, (time T − s).

The weight vector,W, has decreasing components since we give higher weights to closer
times for moments closer to the time we are analysing. One example traditionally used
and the same that is used in this work is Wi = Ri, with 0 < R < 1. Then we have∑T

s=0WT−s = RT

1−RT , and Wi corresponds to a geometric series. Typical values (see
Litterman and Winkelmann [1998]) are R = 0.9 and T = 20.

According to the findings of Gallucio et al. [1998], Laloux et al. [1999], Plerou et al.
[1999], Laloux et al. [2000], Plerou et al. [2001], Wilcox and Gebbie [2004], Sharifi et al.
[2004] the correlation (or covariance) matrices of financial time series, apart from a few
large eigenvalues and their corresponding eigenvectors, appear to contain such a large
amount of noise that their structure can essentially be regard as random.

Such as in Wilcox and Gebbie [2004], Sharkasi et al. [2006a] we will consider the three
larger eigenvalues and its respective eigenvectors as carrying meaningful information.

In the multivariate signal processing problem, one key issue might be when instabilities
occur in signal patterns and how we might determine if the fluctuations are damped,
remain at low level, or combine in some way as to cause a major event, e.g. a market
crash. Crashes are also interesting since the market dynamics changes during the event,
see Vilela Mendes et al. [2003], Araújo and Louçã [2006].

2.10.1. Computational implementation

The computational implementation of this method is presented in Appendix C.
Computationally there is one important issue, that does not appears when considering

a single data set, sometimes for a given day different markets are closed, even if the cause
is a local holiday. In the implementation we have skipped those values, ignoring both the
covariance product and the respective weight.
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“Turning ideas into software in this way need not be an unpleasant duty,
of course: programming can be very stimulating and immensely satisfying. In
addition the exercise of drafting an algorithm to the level of precision that pro-
gramming requires can in itself clarify ideas and promote rigorous intellectual
scrutiny. In our view it is somewhat ironic that even very substantial soft-
ware contributions do not seem to attract the same academic credit as refer
reed publications: in reality nearly every user of the software becomes a more
meticulous and critical reviewer than most anonymous referees!” - Venables
and Ripley [2000]

3.1. Introduction

The purpose of this chapter is to introduce some of the computational methodology used
in this thesis as well as to discuss some of the changes and challenges in today’s scientific
computing landscape.

It is my opinion that scientific computing is an interesting study in itself, to the same
degree as it is needed to realise the mathematical tools and techniques demanded. The
choice of computational tools and techniques applied in this work is as important or nearly
so as the mathematical formulation since the results are based on their discriminating
application and they serve as a basis for characterising the work.

According to wikipedia (http://en.wikipedia.org/wiki/Scientific_computing):

“Scientific Computing (or Computational Science) is the field of study con-
cerned with constructing mathematical models and numerical solution tech-
niques and using computers to analyze and solve scientific and engineering
problems. In practical use, it is typically the application of computer simulation
and other forms of computation to problems in various scientific disciplines.

The field is distinct from computer science (the mathematical study of com-
putation, computers and information processing). It is also different from the-
ory and experiment which are the traditional forms of science and engineering.
The scientific computing approach is to gain understanding, mainly through
the analysis of mathematical models implemented on computers.

Scientists and engineers develop computer programs, application software,
that model systems being studied and run these programs with various sets of
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input parameters. Typically, these models require massive amounts of calcu-
lations (usually floating-point) and are often executed on supercomputers or
distributed computing platforms.

[...] Computational science may be considered as a new third mode of sci-
ence, complementing and adding to experimentation/observation and theory.”

The reason for placing the quotation above illustrates a feature of Internet, the dynamic
nature, unlike books where data is presented statically the Internet is constantly changing.
The quotation above is thus a frozen image of the content above at the time this Chapter
was written and will certainly be different at a later time.

This definition is interesting for two seemingly unrelated reasons: for one it highlights
the role of scientific computing and places it on the same footing as theoretical and exper-
imental fields; another less immediately obvious reason is that the Internet has not only
brought more comprehensive search and access but has realised new ways for people to
coordinate and show scientific work. Wikipedia, (Wiki stands for What I Know Is, it was
first used as a way to allow people to foster collaboration by allowing anyone to modify
the content), an on-line encyclopedia that can be updated by anyone, subject to very
few rules, provides one simple example; the sharing of bio-related data through on-line
databases such as PDP, GEO, KEGG, ExPasy and others or the financial data available
from Yahoo/Finance, used in this work, is another.

Today the use of computers is pervasive, inside and outside science, and that is also
a consequence of the use of Internet. Each computer is a “laboratory” in itself since
it allows the use of new methodologies in problem solving as well the exploration of new
areas, while the Internet as a global network brings a new level of interaction and potential
collaboration. This Chapter tries to explore this duality: the use of computers in scientific
computing and opportunities provided by the collaborative platform that a global network
of connected computers allows to the scientific community. One of the postulates of this
Chapter is that it is increasingly difficult to distinguish between the two sides of this coin
and the use at local level is essentially one end of the global gateway continuum.

We are still trying to understand how best to take advantage of computers to analyse
and understand the problems posed in everyday scientific activity. This is the Internet
age, where we have new ways to cooperate and develop new techniques. If we take the
Wikipedia example, there are recent reports, Nat [2005], comparing the accuracy of tra-
ditional encyclopedias, with this decentralised process with results (perhaps surprisingly)
showing little differences in terms of the defects/errors statistics of the articles.

Early use of computers allowed the exploration of new horizons, which have continued
to expand to current time, and this change of paradigm will take some time to settle down.
Meanwhile we need to signpost the route taken. For this reason the methodology section
contains external references to software (at the current stage of development) that are
used to implements some of the proposed methods. These signposts, directions and choice
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of routes will, inevitably, be updated with time.
In what follows in this Chapter we define Free Software, how it is related to scientific

computing and the analogies between both dynamics. Free Software has been used ex-
clusively in this work and the intention is to reinforce that choice as a methodological
approach, an important one in the author’s opinion.

Free Software is not the single methodology that can be highlighted in this work.
Equally, although computer science and scientific computing are different areas of study,
this should not be a reason for them not to share methods. On the contrary, methods can
be “borrowed” from each area with considerable advantages for both and those relevant
here are presented in more detail in Section 3.3.

Next the tools/programs used in this work are described, and the reasons for each tool
choice are presented in a general introduction while reference to a more exhaustive list of
specific packages is made later. The general framework discussed in detail, permits other
tools to be built.

Collaboration is intrinsic both to modern Science and the development of Free Software.
Every incremental step is a gain towards the higher objective of better understanding. In
the last section, projects are discussed to which the author has made a contribution during
the course of this work.

3.2. Free Software

3.2.1. Introduction

Universities were some of the first places to adopt the Internet, and for long time academic
centres were both its major users and its backbone. The Internet has allowed development
of new tools, with email and the Web (the result of an experiment from Tim Berners Lee to
make information easily available on CERN, European Organisation for Nuclear Research,
a research centre on high energy (particle) physics,) being two of the best known examples.

The symbiosis between Free Software and the Internet was mutual with Free Software
both a product of the Internet and its main supporter. If it was not for Free Software,
it is very doubtful that we would be as advanced as we are today with the omnipresent
Internet.

3.2.2. Definition

New methods for transfer of information promoted the emergence, in 1984, of the Free
Software movement. Free Software existed before this date, initially sharing software was
the rule that later became the exception.

UNIX is one such example, due partially to Bell Company antitrust case, the antitrust
rule forbid Bell from doing business outside of telecommunications. UNIX was developed
in Bell and its code was distributed on request. Only later attempts were made down
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on the to close the code, but by then it was too late. The Free Software Manifesto from
Richard Stallman was the first sign of a new understanding required to preserve those
roots of knowledge transfer. This freedom to share has been strongly associated with the
scientific method (see Stallman [2002] story of Tycho http://www.gnu.org/philosophy/

right-to-read.html). According to Free Software Foundation (http://www.gnu.org/

philosophy/free-sw.html):

“Free software is a matter of the users’ freedom to run, copy, distribute,
study, change and improve the software.”

It should be noted that those rules only apply to distribution, any private changes are per-
mitted by the license and do not need to be published. This remark may seem superfluous,
yet it is frequently misunderstood.

Free should not be perceived as “gratis” and it is possible to have commercial free
software. It is also referred to as Open Source, and for most practical matters these are
mutually interchangeable, but the philosophy behind each is a little different. The focus
of Open Source is based on notion that “It works”, while Free Software treats software as
ideas and in the same spirit as that of scientific investigation: ideas develop a lot faster if
they are shared.

The Free Software Foundation created the GNU project, designed to create a Free
Software derivative of UNIX. At the same time a license was developed to legally uphold
the ideals of Free Software; that license is GPL (General Public License), and it forms
the corner stone of the Free Software movement. Most of the software projects presented
here are released under this license, this applies both to the libraries created specifically
for this work (Appendix C) as well as to external software used (Appendix D).

Other Free Software licenses exist, with the most important being the BSD/MIT class.
The major difference is that this type of license allows the derivative code to be made
proprietary, (as opposed to free).

3.2.3. Free Science - Open Access

Other movements inside apply the same philosophy to other domains, (arXiv and Wikipedia
are two already cited). “Open Access” is a movement which intends to guarantee free ac-
cess to scientific articles (see Moody [2006a,b,c,d], Kelty [2001], Willinsky [2005]).

In illustration, a useful resource in writing this thesis was http://planetmath.org/

(Planet Math), a community site dedicated to the compilation of mathematical knowledge.
PlanetMath’s content is created collaboratively: the main feature is the mathematics
encyclopedia with entries written and reviewed by members.
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3.3. Methodological approach

This section illustrates the different computational methodologies used in this thesis.
Methodologies here are intended as tenets for all computer-related work. The distinction
between methodologies and tools, (presented in the next section), is that methodologies
are related to the design data analysis and treatment and are independent of the tools
used, although different tools favour different approaches.

Exclusive use of free software

A consequence of using Free Software is that programs can be ported everywhere. In
this case this implies many Operating Systems, although naturally the tools are easiest to
setup in the environment in which they have been developed.

Reproducibility of results

All results should be possible to regenerate easily: this usually entails the use of scripts
to drive the different parts of the analysis.

Reuse of available software

Behaviour described in informatics terms, as NIH syndrome (where NIH stands for Not In
Here) characterises the reaction of suspicion, by which any software not made internally
is discarded. This equates to the proverbial case of “reinventing the wheel” every time. It
is also unreliable in concept and practice as the other extreme, where any outcome from
a computer program is taken as the “Truth”.

Redundant methods

It does not matter if a program is fast if it is not correct. This tautology is easy to
understand but less easy to implement.

In order to avoid single failure points every effort has been made to implement all
methods using at least two different implementations. This in itself does not guarantee
the correctness of the results but does increases our confidence in them.

One other technique coming from software development is “Unit testing”. The idea here
is that tests for the code are written first, then the code itself. There is an analogy with
mathematical systems in that one of the methods we use is the identification of invariants,
(quantities that remain unchanged over a given range of operations).

Unit testing advocates the writing of tests where we compare the empirical result to
that expected based on known cases, in order to ensure the correctness of the code at
hand.
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3.4. Tools

Tools described are general and not restricted to implementation of any particular tech-
nique; they allow and encourage the creation and use of libraries related to the problems
studied.

The programs and languages described where are the basis for those the software used
in this work. The library developed in this work for the analysis of financial time series
(Appendix C) is a Python library. The external software (Appendix D) has a broader
origin and it was developed using any of the languages presented below.

3.4.1. Languages and libraries

An important distinction between different languages relates to their libraries, whether
the standard library or available add-ons.

There are few, if any, “one size fits all” solutions; every language used has advantages
and drawbacks, which are discussed in detail in what follows.

3.4.1.1. R

R (http://www.r-project.org) is a free implementation of the S language. S was pri-
marily developed at AT&T Bell Laboratories to be a language oriented towards Statistics,
(hence the name).

The repository of available packages, (almost all of which are Free Software), can
be found in R homepage CRAN (Comprehensive R Archive Network, http://cran.

r-project.org).

3.4.1.2. Python

Python (http://www.python.org) is a general purpose script language with a tidy syntax
and with very good and appropriated features as a glue language, i.e. a language that
holds together different programs.

Numeric Python http://numpy.sourceforge.net is the python library that adds nu-
meric arrays to python. For this reason it has become the basis for lots of other
packages.

matplotlib http://matplotlib.sf.net [Barrett et al., 2004] is a python library that
adds support for plotting graphics.

rpy rpy.sf.net is a bidirectional wrapper that allows communication between python
and R.
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3.4.1.3. bash

bash (http://www.gnu.org/software/bash/) is an implementation of a shell language.
It serves as a framework for further tools, used as building blocks of powerful scripts:

coreutils The GNU Core Utilities (http://www.gnu.org/software/coreutils/) are the
basic file, shell and text manipulation utilities of the GNU operating system. These
are the core utilities which are expected to exist on every operating system. Examples
of tools belonging to this package are: cut ; head ; tail ; paste; join; sort and uniq.

awk (http://www.gnu.org/software/gawk/): the GNU implementation of the AWK
programming language. It allows for simple manipulation of patterns and it is best
used with shell. The gawk package contains the GNU version of awk, a text pro-
cessing utility. Awk interprets a special-purpose programming language to do quick
and easy text pattern matching and reformatting jobs.

grep (http://www.gnu.org/software/grep): grep searches through textual input for
lines which contain a match to a specified pattern and then prints the matching
lines.

sed (http://www.gnu.org/software/sed) the sed (Stream EDitor) editor is a stream or
batch, (non-interactive), editor. Sed takes text as input, performs an operation or
set of operations on the text and outputs the modified text. The operations that
sed performs, (substitutions, deletions, insertions, etc.), can be specified in a script
file or from the command line.

findutils (http://www.gnu.org/software/findutils/): the find utility searches through
a hierarchy of directories looking for files which match a certain set of criteria, (such
as a filename pattern), and executing the ordered operation.

3.4.1.4. C/C++

Technically C and C++ are different languages with C being a subset of C++, (there are
very small differences that will not be discussed here). Although sharing some features,
the philosophy of the languages is different since each (as for all languages) employs a
different conceptual approach to problem solving.

The compiler used to compile all the C and C++ programs here was gcc (http://gcc.

gnu.org/). GCC stands for Gnu Compiler Collection as it covers other languages namely
Fortran, with gfortran its frontend for Fortran 95.

Numerical Analysis Backbones Among the scientific community reference to the “Nu-
merical Recipes” series of books on numerical methods is widespread. Several criticisms
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however, have been made to these books; while a useful introduction to numerical meth-
ods, their methods are not the most effective, stable or modern. An alternative place to
search for numerical method implementation is http://www.netlib.org/.

Atlas (http://math-atlas.sourceforge.net/) (Automatically Tuned Linear Algebra
Software): the project is an ongoing research effort focusing on applying empirical
techniques in order to provide portable performance. At present, it provides C and
Fortran77 interfaces to a portably efficient BLAS implementation, as well as a few
routines from LAPACK.

C Lapack

LAPACK (Linear Algebra PACKage) is a standard library for numerical linear alge-
bra. Lapack (http://www.netlib.org/lapack/), clapack (http://www.netlib.

org/clapack/) and lapack++ are the respective implementations for Fortran, C
and C++.

GSL The GNU Scientific Library (http://www.gnu.org/software/gsl/) is a numerical
library for C and C++ programmers.

pygsl (http://pygsl.sourceforge.net/) provides a python interface for the GNU sci-
entific library (gsl).

3.4.2. General

3.4.2.1. Computer Algebra System

In the fortunate cases, where analytical calculus is possible, Maxima is used to perform
the calculations http://maxima.sourceforge.net.

3.4.2.2. Plotting

Grace (http://plasma-gate.weizmann.ac.il/Grace/) is an application for two-dimensional
data visualisation. Grace can transform the data using free equations, FFT, cross-
and auto-correlation, differences, integrals, histograms, and much more. The gener-
ated figures are of high quality. Grace is a very convenient tool for data inspection,
data transformation, and for publication-quality figures.

gnuplot (http://gnuplot.info/) is a command-line driven, interactive function plotting
program especially suited for scientific data representation. Gnuplot can be used
to plot functions and data points in both two and three dimensions and in many
different formats.

ipython (http://ipython.scipy.org/) provides a replacement for the interactive Python
interpreter with extra functionality.
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3.5. Contributions of this work to software projects

In addition to econophysics analysis reported in the following Chapters, contributions to
the software used in this work, have been extensive and in many cases have been made
freely available for wider use. This is the typical “hitch and scratch” approach to Free
Software.

LYX (http://lyx.org)

Writing, be it papers, reports or books is an integral part of scientific activity.
LYX is a document preparation system that encourages an approach to writing based

on the structure of documents, not their appearance. LYX uses several backends the most
important being LATEX [Lamport, 1986], a set of macros build up on Donald Knuth TEX
[Knuth, 1984].

The contributions of the author have been made to the other two backends, namely
LinuxDoc and Docbook [Walsh and Muellner, 1999]. Another contribution was made to
the sub-system that allows to read, and update, older versions of the LYX file format. This
allowed to decouple to support for older versions from the C++ code improving the file
format to clean and more robust state.

As an illustration of the capabilities of the software, this thesis was written in LYX.

Fedora (http://fedoraproject.org)

Fedora is an international project to build a Linux distribution. A Linux distribution is
the collection of the software packages with the necessary framework to install in a new
computer. Examples of other widely used distributions are Debian, Ubuntu, Suse, Gentoo
or Mandriva. The mission goal of Fedora states its strong commitment to Free Software.

One of the other goals is the ability to run in different CPU’s architectures, presently it
runs on the Intel 32 bits architecture (and compatible like AMD), 64 bits from Intel and
AMD chipmakers, PowerPc architecture (whose most famous member were the Mac’s)
and Sparc architecture from Sun. This allows to run (almost) the same software versions
across this heterogeneous hardware.

This project has several components with the more important being Fedora Core and
Fedora Extras. Fedora Core is a Linux distribution descendant of the popular Red Hat
Linux. As the name implies it intends to release distributions with the base packages
(Core). Fedora Extras is a community-oriented project with the goal of building general
packages to run in Core.

Fedora serves as a basis for other Linux distributions (both directly and indirectly). One
such project, Scientific Linux (https://www.scientificlinux.org/), is oriented towards
Scientific Computation. Scientific Linux is a Linux release put together by Fermilab,
CERN, and various other laboratories and universities around the world. Its primary
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purpose is to reduce duplicated effort of the laboratories, and to have a common install
base for the various experimenters.

The packages listed below were submitted and accepted for release in Fedora Extras,
and are maintained by the author:

fftw-2 http://www.fftw.org/ version 2 of FFTW is an excellent implementation of Fast
Fourier Transforms.

grace http://plasma-gate.weizmann.ac.il/Grace/ a plotting program.

python-imaging http://www.pythonware.com/products/pil/ a python library for im-
age manipulation.

pygsl http://pygsl.sourceforge.net a python library with bindings for GSL.

rpy http://rpy.sourceforge.net a python library with bindings for R language.

R-mAr http://cran.r-project.org/contrib R package for Multivariate AutoRegres-
sive analysis.

R-waveslim http://cran.r-project.org/contrib R package for wavelet studies. The
code provided here is based on wavelet methodology developed in Percival and
Walden [2000].

R-wavetresh http://cran.r-project.org/contrib R package for wavelet studies. Soft-
ware to perform 1-d and 2-d wavelet statistics and transforms.

tetex-dvipost http://efeu.cybertec.at/ a LATEX package to post-process the dvi out-
put.
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4. Portuguese Standard Index (PSI-20)
Analysis

“Jean-Luc Picard: Sometimes it’s possible to make no mistakes and still
lose. It is not a weakness. It is life.” - Star_Trek: The Next Generation
(“Peak Performance”)

4.1. Introduction

This Chapter is an extension of the work presented in Matos et al. [2004]. Some of the
previously described econophysics tools are applied to the Portuguese Standard Index
PSI-20. PSI-20 index main characteristics are described in Section 4.2. The Portuguese
case is chosen both for: a) regional relevance; b) relatively little previous study and c) its
relevance as a showcase both as an emerging young/mature market and its relevance to
discuss features on the techniques presented.

The data analysis, using multiplicative and additive stochastic models, studying the
empirical distribution of data and the trend persistence analysis, is presented in Section 4.3.

Detrended fluctuation analysis (DFA), (introduced in Chapter 2), is applied to the
PSI-20 daily time series and results are analysed and discussed in Section 4.4. This initial
application was the forerunner and constituted the main motivation for the development of
the generalisation of this method, presented in next Chapter. The results presented favour
a multifractal description of the data therefore in Section 4.5 we explore the multifractal
Hurst exponent.

The main conclusions relative to PSI-20 are gathered in Section 4.6.

4.2. The Portuguese Stock Index PSI-20

The Portuguese Stock Index PSI-20 is the national benchmark index, reflecting the price
evolution of the 20 largest most liquid assets selected from the set of companies listed on
the Portuguese Main Market. The rules for construction of PSI-20 are published [PSI,
2003], but can be summarised briefly as giving a different weight to each asset belonging
to the index, such that no asset has more than 20% of the total weight.

The data used in this manuscript are the daily values at the close of session for the
PSI-20 obtained through the Porto services of Bolsa de Valores de Lisboa e Porto
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(BVLP). PSI-20 had its beginning in January 4th 1993 and still remains as an independent
index.
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Figure 4.1.: PSI-20 evolution from 1993 to 2002.

Figure 4.1 shows the different periods present in the PSI-20 index. In the first 15 months
we can observe a clear initial growth, followed by a stable (small fluctuations) period until
the beginning of 1997. From 1997 to the first quarter of 1998 there is a surge, where
the PSI-20 index triples its value. After this period and up to 2000, we observe a highly
volatile regime characterised by strong fluctuations and short range trends. After the 2000
peak (roughly corresponding to the dot com bubble burst), we essentially have a decline.

In the following, we present an analysis of the PSI-20 signal, using time series models
(the additive and multiplicative variants) and methods, (such as detrended fluctuation
analysis and correlation functions), which have recently been popularised in the econo-
physics literature.

4.3. Data analysis

4.3.1. Stochastic models

Most of the statistical methods assume (weak or strong) stationarity to deal with time
series, e.g. Chatfield [2003]. Simple forms of time series models may be written for the
additive and multiplicative cases, respectively, as:

Xt = x0 +
t∑

i=0

δXi (4.1)
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Figure 4.2.: Dispersion relation for the PSI-20 time series as a function of the index value.

or

Xt = x0

t∏
i=0

(1 + ηi) , (4.2)

where δXi = Xi+1 −Xi and ηi = δXi
Xi

, for times series values Xi (i = 1, 2, · · · ), where x0

is the initial data.

Expectations of performance, according to Bouchaud and Potters [2001] are that the
best models for financial data show a combination of both short-term additive and long-
term multiplicative effects.

In Figure 4.2 we can see that the index variation grows with the index values. This
increased dispersion with increasing Xt is typical of financial data of this type and taking
logarithms of the original series is usually required to stabilise the variance.

The next step is to quantify this variation, since this is a stochastic process and we are
interested in studying the dependency of the average of fluctuations with the index value.
For this we divided the range of possible values for the PSI-20 into 20 regions of equal
size. It should be noted that the results obtained are robust to a variation of the number
of intervals around the chosen value.

We took the expected value (average) of the square deviations for each region. The
reason for this transformation over segments (TOS) with 20 intervals is a compromise
between the number of points in the fit and the number of samples in the interval. The
number 20 is a compromise, a greater number of regions would decrease the number of
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Figure 4.3.: Relation between < δX2 > and X, < δX2 >∝ Xγ with γ = 3.16.

points available for statistics and favour the outliers. A smaller number of regions would
cover a wide range of the possible values of the index.

The result of the TOS analysis is plotted in Figure 4.3 and is presented on a log-log
scale. A linear fit to the data presented in Figure 4.3 gives the exponent 3.16, or 1.58 for
the standard deviation. Note that the value 1.58 is far from the value 1 that we would
expect for a pure multiplicative model (a diffusive model with H = 0.5, the random walk).

4.3.2. Empirical distribution of data

Another way to characterise the PSI-20 time series data is to build the corresponding
histograms and this has been done for δX, the daily difference, and for log(1 + η), the
logarithmic return (defined in equation 1.1).

Figure 4.4 compares, in a linear-log plot, the histogram of log returns with the probabil-
ity density function of a Normal distribution N(µ, σ2) with average and standard deviation
equal to the corresponding sample average (µ = 4.3 10−4) and sample standard deviation
(σ = 0.010). The exponential growth and decay around the origin is clearly demonstrated,
as is the presence of fat tails. It is also clear that several extreme events, (outlying values
≥ 5 standard deviation away from the mean), are also influencing the fit to a Normal
distribution.

The histogram of the differences, in Figure 4.4, has similar features, although the decay
near the origin is more erratic. Note that considerations about the extreme values again
apply here. For the histogram of the differences the sample average is 2.21 and the sample
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Figure 4.4.: Histograms for the return and difference from the PSI-20 time series.

standard deviation is 104.3. The standard deviation is very large and most of this comes
from the two peaks occurring in 1998 and 2000, (seen in the Figure 4.1). This is illustrated
again if we follow the evolution of the standard deviation with time, whit these two peaks
being recovered.

Using a maximum likehood estimator, presented in Section 2.8.3, we recover the value
α = 1.59 for a Lévy stable distribution. This clearly agrees with the above description of
a non-Normal distribution for logarithmic returns. The skewness coefficient β = −0.001
is again in line with the quasi-symmetry of the histogram, by which we mean that losses
and gains are (almost) equally probable when comparing its absolute value.

4.3.3. Trend persistence analysis

4.3.3.1. Histogram

A further quantity of interest is the study of daily trends persistence, that is, the persis-
tence of the same behaviour regarding gains/losses for some consecutive period of days.
It is, of course, risky to infer a day-to-day trend in an index, for which only one value per
day is recorded and which is itself volatile over that period. This criticism applies to many
financial data, which tend to be volatile by nature, and constantly raises questions about
how fine-grained or coarse-grained the intervals of recording should be. Nevertheless, for
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Figure 4.5.: Histogram of trends duration

the PSI-20, the available data show that the closing index value is a good indicator of its
day average, in the sense that the absolute relative errors between the index at closing
and the average of the maximum and minimum session values are almost everywhere less
than 2%. Thus, the behaviour at closing has similar features on a day-to-day basis and
constitutes a valid basis for comparison, albeit an approximate one.

Using the PSI-20 time series we build a new series with the daily trend persistence where
the trading days will be distributed in clusters of different sizes. From the initial 2216
data points we get 993 trend clusters.

In Figure 4.5 we see a histogram of duration of trends or prolonged gains/losses. In order
to help us to distinguish between the positive and negative trends we have considered the
negative trends as corresponding to negative days. Although this is an artefact it is very
effective in comparing the differences, if any, between the two behaviours, relating to
gain/loss.

Considering an exponential fit to negative and positive trends, in the form

f(x) = a exp(−b|x|),

we obtain the following results for the histogram:

a b

Negative 347.0± 11.9 0.55± 0.02

Positive 347.7± 13.5 0.57± 0.02

These results suggest that within the error range of the coefficients both negative and
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Figure 4.6.: Relative loss/gain of trends. The cumulative return is compared between the
beginning and the end of the trend.

positive trends follow the same law.

4.3.3.2. Return during trends

Also important is understanding how the size of the trend is related to its cumulative
return as can be seen in Figure 4.6. Again we follow the same convention as above to
highlight the characteristic behaviour of losses and gains.

It seems clear that returns become less cautious or conservative on longer positive trends,
as do large losses on prolonged negative trends. Where quick changes are occurring (i.e.
where there are a lot of short up/down runs), returns are correspondingly cautious as the
market is clearly uncertain.

4.3.4. Autocorrelation function for the return series

The return series of the PSI-20 index, defined as ηt = δXt
Xt

, shown in Figure 4.7, presents
a short term memory. This is typical behaviour, as observed in other financial series
[Bouchaud and Potters, 2001], in liquid markets the correlation of price changes decays
to negligible levels in a few minutes, consistent with the absence of long term statistical
arbitrage.

If we consider the autocorrelation function for the modulus time series, |ηt|, that is the
absolute variations without regarding the sign, then the series displays long-term memory.
This is known in financial literature, non-linear functions of the returns exhibit significant
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Figure 4.7.: Autocorrelation function for ηt time series.

positive autocorrelation (see Ding et al. [1993], Harvey [1993]). This is an indication that
the volatility is clustered in time, that is we have periods with stronger fluctuations and
others where the variations are small, but they are grouped together.

4.4. Detrended fluctuation analysis

Applying the DFA technique, described in Section 2.7.2 to the whole PSI-20 time series, we
obtain the value of H = 0.59. This single value hides the complexity inherent in the time
series, due to the periods of distinct behaviour as noted is Section 4.2, (see Figure 4.1).
However, the nature of the approach (i.e. based on the interval characterisation in terms
of the Hurst exponent) also means that we can apply the DFA to smaller intervals of fixed
size (100, 200, and 400 points). Each one of these sub-intervals is characterised by its
Hurst exponent.

The choice 100, 200, and 400 point intervals corresponds to one half, one and two years
of the PSI-20. The purpose of this analysis on different scales is to test the dependence of
the results on the granularity of the data, since as seen in multifractal analysis (Section 2.6)
we expect different behaviours at different scales for financial time series.
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Figure 4.8.: The H(t) exponent obtained for different sizes of the “sliding” window.

4.4.1. Graphical analysis for sliding windows

In Figure 4.8, each point represents the centre of a sliding window, moved along the series,
and its correspondent Hurst exponent. The latter is obtained by fitting a power law to
the DFA function < F (t) > computed in the sliding window. Regression coefficients are
computed for the fit in each case.

The regression coefficient r(t) is also plotted for each point revealing the quality of the
fit where the H exponent is evaluated; in all graphics the regression coefficient is near
1. All regression coefficients, r(t), may be seen to fall in the range 0.95 − 1, giving us
confidence in the power law behaviour of < F (t) > .

We also see that, for all window sizes, the exponents evolve to values close to H = 1/2.
This fact can be interpreted, according to the Efficient Market Hypothesis [Fama, 1970],
in terms of maturation of the market. Maturity, here, is used in the sense of increased
stability or reduced liability to extreme fluctuations, with improved ability to sustain
absorption of/or response to other external market influences.

Also it can be seen from the evolution of the Hurst exponent that, for the different
window sizes, there is a rich structure at different scales reinforcing our previous remarks
that a multiplicative model, (or more generally any uni-fractal model), does not provide
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4. Portuguese Standard Index (PSI-20) Analysis

scale 100 200 400
1998, 1Q 1997, 4Q 1997, 2Q
1999, 2Q 1999, 3Q 1999, 2Q
1999, 3Q 2000, 3Q 2000, 3Q

Table 4.1.: Common events in all scales where H(t) drops below 0.5.

a complete and simple explanation for the PSI-20 data.
Smaller scales are more sensitive, and react quickly, to changes in the market. The

graphics are becoming smoother as the scale increases. The correlation coefficient becomes
almost indistinguishable from 1 at the larger scale, supporting the description of the
intervals by the Hurst exponent.

Searching for commonalities in the three scales we see three events, where H(t) drops be-
low 0.5 in scale 400, can be found as well in the other scales. Those events are summarised
in Table 4.1.

Comparing those dates with Figure 4.1 we see that around that period the index presents
a highly volatile behaviour in the random walk sense, when compared with surrounding
regions, an indication of a more mature behaviour at that time.

4.5. Multifractal Hurst exponent

The fBm approach is essentially uni-fractal and is predominantly used for insight on
persistent/anti-persistent behaviour in this instance. Applying to PSI-20 series the gener-
alised Hurst exponent, defined in Section 2.7.3.2, H(q) where q is the moment, we get the
graphic in Figure 4.9.

It is easy to see the decreasing exponent for higher values of moments. As it can be seen
in the Figure 4.9 we recover the value obtained from DFA for moment q = 2, H(2) ≈ 0.59.
For a discussion of similar results of FX (Foreign Exchange rates) markets see Di Matteo
et al. [2005].

4.6. Conclusions

For the Portuguese PSI-20, we have demonstrated that the daily variation in the index
value exhibits a power-law exponent of value 1.58, in contrast to that predicted for pure
additive or multiplicative models. The time series for these data shows distinct periods,
characteristic of an emerging marketThe classification of markets according to emerging/-
mature dichotomy is discussed in Appendix A., with much of the variation in the series due
to the period after 1998. The series demonstrates the typical fat tails, though additional
variation is noticeable, particularly in the period 1998− 2000.

The use of DFA to analyse the behaviour of the Hurst exponent in a fBm approach
indicates that the daily series exhibit short-term persistent behaviour, though persistence
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Figure 4.9.: Generalised Hurst exponent applied to PSI-20 time series.

77



4. Portuguese Standard Index (PSI-20) Analysis

degenerates over long periods. In particular, over intervals of 400 time points, the H

exponent shows a gradual decline to anti-persistent behaviour. Much of this is due to the
noted erratic period in the daily index (1998 − 2000) and coincides with the Portuguese
market emergence in the global context.

There is some evidence that stability has improved towards the end of the series. In
other words the maturation of the Portuguese market suggests alignment with the global
tendency of other reference markets.
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5. Time and Scale Detrended Fluctuation
Analysis (TSDFA)

"I react pragmatically. Where the market works, I’m for that. Where the
government is necessary, I’m for that. I’m deeply suspicious of somebody who
says, ’I’m in favor of privatization,’ or, ’I’m deeply in favor of public owner-
ship.’ I’m in favor of whatever works in the particular case." - John Kenneth
Galbraith

5.1. Introduction

In the previous Chapter we have applied several econophysics tools to the study of the
Portuguese Stock Index (PSI20). We have applied DFA to “sliding windows” of different
sizes. The motivation and importance of this kind of analysis is the well known multifractal
behaviour that financial data exhibits (see Lux [2004]). This was reflected in the output
for 100, 200 and 400 trading days windows, as seen in Figure 4.8.

A natural extension of this analysis is to consider other window sizes, i.e. to go from
H(t) at scale s to H(s, t). The results may then be combined in a 3D graphic where
the scale and temporal dependencies of the Hurst exponent can be displayed for the time
series studied. The previous analysis is thus a particular case, a cross section of H(s, t)
with the scale fixed.

In this Chapter we formalise this generalisation of the DFA to scale and time depen-
dencies, (Section 5.2).

The results of the analysis are presented in Section 5.3, where we classify different mar-
kets according to the resulting patterns, that turned to be more richer than the traditional
distinction between developed/emergent. The traditional distinction between developed
and emergent is discussed here as well. The explicit time and scale dependency allows us
to draw more confident conclusions about the class types and what markets these contain.

The last section thus details the principal conclusions and points directions for further
study.
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5. Time and Scale Detrended Fluctuation Analysis (TSDFA)

5.2. Generalisation of time and scale for the Hurst exponent

The dependency of the Hurst exponent on time and scale, H(s, t), is akin to the Continuous
Wavelet Transforms (CWT), described in Section 2.4.2. In both of these transforms, there
is data redundancy, since we are moving from 1 to 2 dimensions, but this allow us to detect
several features in these data that would otherwise be hidden.

Another resemblance with CWT is that both techniques display the time and scale
dependency of the results.

5.2.1. Method characterisation

The general idea behind this method is the study of the Hurst exponent as a function
of both time and scale. In practical terms this method is a simple expansion of the
“windowed” DFA applied in Matos et al. [2004]. Instead of fixing s we let it be a variable.
The Hurst exponent, H(t, s), for time t and scale s, is evaluated as the Hurst exponent
obtained using the DFA, (described in detail in Section 2.7.2), for the interval [t− s

2 ; t+ s
2 ].

Implications are wider than for a simple DFA. The general idea is to essentially invert the
process and take H(s, t) as the focus of the analysis with the DFA being an implementation
detail. The other candidate to evaluate the Hurst exponent in the sub-intervals is the
wavelet based method described in Section 2.7.4. In both cases H is recovered as a power
of the scale, inside each sub-interval, (see equations 2.68 and 2.73).

Recalling the most important equation in DFA we have the detrended fluctuation func-
tion as (Equation 2.68):

F (t) ∼ tH ,

where H is the Hurst exponent.
From the above condition we know that s/2 + 1 ≤ t ≤ T − s/2, where T is the time

series length. In what follows the maximum scale we consider is s = T/4 as for large scales
we essentially recover the Hurst exponent for the whole series.

A major concern in this work was to guarantee that exponents obtained through DFA
were meaningful. For that reason we have used the same procedure as in Matos et al.
[2004], we have controlled the quality of the fits assuring that the regression coefficients
of the linear least squares fits were near unity for all studied markets. If we would not do
this, the results would be unreliable, since the underlying time series is not well described
by a fractional Brownian motion. To this combination of the DFA with time and scale
dependency, we apply the term TSDFA (Time and scale DFA).

5.2.2. Examples

Here we study some examples of the technique applied to several international markets.
We choose these because they display details that are either unique or shared with other
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5.2. Generalisation of time and scale for the Hurst exponent

Date Events
1997/07 Asian crash
1997/11 Asian crash
1998/10 Global crash
1999/10 Memory of a crash (no crash)
2000/03 DotCom crash
2001/09/11 Terrorist attack (New York)
2002/05 Stock Market Downturn
2003/12 General Threat level raised
2004/03/11 Terrorist attack (Madrid)

Table 5.1.: Major events for global markets.

markets and contribute to understand the differences and similarities that TSDFA em-
phasises.

Traditionally we distinguish between developed and emergent markets, the distinction
varies depending on the source and of the applied criteria. A more in depth discussion of
this issue is found in Section 5.3.

In order to better understand the results we display in Table 5.1 a list of major events
that have affected international markets (see Sharkasi et al. [2006a]).

5.2.2.1. Nikkei

As an illustration of the method we worked with Nikkei 225 data ranging from 1984 to
2005. The evolution of the index over the last 20 years is represented in Figure 5.1. Nikkei
was chosen because it is a well known and studied financial index.

The graph resulting from application of the TSDFA method is shown in Figure 5.2. The
graphic represents as a contour plot, with exponents in range [0.3; 0.9], the series studied
from 1990−2005 and the scale between 100 and 400 trading days. In this work we adopted
these fixed ranges since this representation permits ready comparison with other indices
calculated, (this applies both to the examples in this Chapter and in Appendix A).

In the Nikkei graphic (Figure 5.2) we can see that persistence is exhibited with the index
normally around 0.5. This reflects a healthy blue/pink borderline and is to be expected
since Nikkei is a mature market. In recent years we see a red stripe that crosses all scales
in year 2000, at the same time as the DotCom crash.

We have another stripe that starts in the fourth quarter of 2001 but does not go through
all scales. Another period of high values of H starts for short scales in the third quarter
of 2002, after a global crash and reaches large scales in 2004.

5.2.2.2. FTSE (UK)

In Figure 5.3 we see the method applied to FTSE, a well known mature market. Just like
in the Nikkei case, blue dominates the graphic. As can be seen there the Hurst exponent
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Figure 5.1.: Nikkei 225 evolution.

has been decreasing over time, most recently the H value has been frequently below the
0.5 barrier.

There is a stripe, for values of H greater than 0.5, that crosses all scales in 1997. The
events 1997 presented in Table 5.1 are the Asian Tigers crashes.

More recently we have another stripe that starts for short scales around September
2001. A small scale stripe showed in the third quarter of 2003.

5.2.2.3. GSTPSE (Canada)

As seen in Figure 5.4, the market shows two distinct periods, before and after 1997. Before
1997 we see high values of Hurst exponent over all scales. After that time, all the regions
of high Hurst exponents are bounded in time and the background turns out to be what
we expect from a mature market, with the Hurst exponent around 0.5.

There are two red stripes after 1997 that cross all scales, one in 1998 and another
starting around September 2001 and travelling forward for higher scales in time.

5.2.2.4. Bovespa (Brazil)

Bovespa, the São Paulo Stock Exchange Index, is known for its high volatility and is
generally considered an emergent market. In Figure 5.5 we see an erratic behaviour with
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Figure 5.2.: TSDFA applied to Nikkei 225. The scale (in trading days) is represented by
the y axis; the time is represented in x axis (years).
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Figure 5.3.: TSDFA applied to FTSE.

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

S&P TSX Composite

1990 1992 1994 1996 1998 2000 2002 2004 2006

 100

 150

 200

 250

 300

 350

 400

Figure 5.4.: TSDFA applied to GSTPSE.
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Figure 5.5.: TSDFA applied to Bovespa.

H either near or above 0.5 and the corresponding stripes crossing together, back and
forward in time, at all scales. There are two red stripes that start from short scales
respectively in 1997 (Asian crashes) and 1998 (global crash) which merge for large scales.
There is another red stripe that walks through all scales and starts for short scales around
September 2001.

5.2.2.5. PSI-20 (Portugal)

Unmodified DFA, the predecessor of TSDFA, was applied to PSI-20 in Chapter 4.1. In
Figure 5.6 we see the results of applying TSDFA to this market, from establishment of
series in 1993.

Initial stages are both antipersistent and subject to extreme values of the Hurst expo-
nent. Comparing this graphic with Table 4.1, we recover the blue stripes, H ' 0.5, for
the same dates found there. This graphic allows us to identify the time of the second and
third stripes and as being the same but with then “travelling” in opposite directions in
time when going to higher scales. We can identify two stripes with a stable (higher) value
of the Hurst exponent, during 1998, and another walking forward in time starting, for
short scales, next to September 2001. Notice that this stripe is so strong that it overlaps
other stripes forming in the neighbourhood.

The overall strength of the TSDFA is to provide further conclusions over those drawn
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Figure 5.6.: TSDFA applied to PSI-20.

earlier concerning the market progression to mature behaviour and its responses times,
clearly different from the initial position.

5.2.3. Features

As can be seen in Figure 5.2 there are several notable features of the plots produced by
TSDFA. The support for these claims is reinforced with the results presented in Figures 5.3,
5.4, 5.5, 5.6, as well as with those presented in Appendix A:

• We can distinguish mature markets by the persistence and stability of H values
around 0.5, most of the time.

• We can distinguish emergent markets by the persistence and stability of H values
above 0.5.

• For some periods, a phase transition appears to occur, sometimes observable across
all scales, sometimes across partial scales only. This is reflected in the spikes which
either point to lower or to large scales;

• A priori, we expected smooth variations of H for large scales since we are taking
into account more data values and therefore we expect greater robustness to sudden

86



5.3. Results

changes of the data. This was already observed in the results obtained for PSI-20,
(Figure 4.8) and is confirmed by all the examples.

• Markets evolve in time, the Canadian case is a notable example of this, where we
observe a shift from emergent to mature features. Although not so dramatic for all
other cases we see over time a decrease in the values of the Hurst exponent.

• There are events that change the Hurst exponent behaviour that can be seen in
most/all markets. The September 11th 2001 is the most striking case that can be
seen in all Figures, as discussed in each of them as it can be seen for all other markets
in Appendix A.

• Clearly, the behaviour is dependent both on time and scale, indicative of the mul-
tifractal background, so that details obtained are richer than those obtained by
calculation of the Hurst exponent directly. This is to be expected since the Hurst
exponent is a summary measure, or index, of the data and this is the observed
behaviour for financial markets (see Lux [2004]).

5.3. Results

5.3.1. Data

All the data on the respective market indices is public and came from Yahoo Finance
(finance.yahoo.com). We have considered the daily closure as the value for the day, to
obviate any time zone difficulties.

The choice of the markets used in this study was driven by the goal of studying major
markets across the world in an effort to ensure that tests and conclusions could be as
general as possible. Hence Table 5.2 contains some of the more important worldwide
markets as well as new markets representing all continents.

In table 5.2 we summarise the markets used in this study. Data and summary statistics
(index value, returns, parameters for Lévy stable distribution) on the markets studied
are recorded and are presented in Appendix A. We have considered, in this study, the
major and most active markets worldwide from America (North and South), Asia, Africa,
Europe and Oceania.

5.3.2. Traditional classification of market maturity

The classification of markets into mature or emergent is not a simple issue. The Inter-
national Finance Corporation (IFC) uses income per capita and market capitalisation
relative to GNP for classifying equitity markets. If either 1) a market resides in a low or
middle-income economy, or 2) the ratio of the investable market capitalisation to GNP is
low, then the IFC classifies the market as emerging, otherwise the classification is mature.
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Abrev. Index Name Country Region Status
^AEX AEX General Netherlands Europe mature
^AORD All Ordinaries Australia Oceania hybrid
^ATX ATX Austria Europe emerging
^BFX BEL-20 Belgium Europe emerging
^BSESN BSE 30 India Asia/Pacific emerging
^BVSP Bovespa Brazil America hybrid
^CCSI CMA Egypt Africa/Middle East emerging
^CSE All Share Sri Lanka Asia/Pacific emerging
^DJI Dow Jones United States America mature
^FCHI CAC 40 France Europe mature
^FTSE FTSE 100 United Kingdom Europe mature
^GDAXI DAX Germany Europe mature
^GSPC 500 Index United States America mature
^GSPTSE S&P TSX Composite Canada America hybrid
^HSI Hang Seng Hong Kong Asia/Pacific emerging
^IPSA IPSA Chile America emerging
^ISCI ISEC Small Cap Ireland Europe emerging
^ISCT ISEC Small Cap Techno Ireland Europe emerging
^ISEQ Irish SE Index Ireland Europe emerging
^IXIC Nas/NMS Composite (Nasdaq) United States America mature
^JKSE Jakarta Composite Indonesia Asia/Pacific emerging
^KFX KFX Denmark Europe emerging
^OMXC20 OMXC20 Denmark Europe mature
^KLSE KLSE Composite Malaysia Asia/Pacific emerging
^KS11 Seoul Composite South Korea Asia/Pacific mature
^KSE Karachi 100 Pakistan Asia/Pacific emerging
^MERV MerVal Argentina America emerging
^MIBTEL MIBTel Italy Europe emerging
^MTMS Moscow Times Russia Europe hybrid
^MXX IPC Mexico America emerging
^N225 Nikkei 225 Japan Asia/Pacific mature
^NYA NYSE COMPOSITE INDEX United States America mature
^NZ10 NZSE 10 New Zealand Oceania hybrid
^OSEAX OSE All Share Norway Europe emerging
^PSI20 PSI 20 Portugal Europe emerging
^PSI PSE Composite Philippines Asia/Pacific emerging
^PX50 PX50 Czech Republic Europe emerging
^SETI SET Thailand Asia/Pacific emerging
^SMSI Madrid General Spain Europe hybrid
^SSEC Shanghai Composite China Asia/Pacific emerging
^SSMI Swiss Market Switzerland Europe hybrid
^STI Straits Times Singapore Asia/Pacific emerging
^OMXSPI Stockholm General Sweden Europe mature
^TA100 TA-100 Israel Africa/Middle East emerging
^TWII Taiwan Weighted Taiwan Asia/Pacific emerging
^XU100 ISE National-100 Turkey Europe emerging

Table 5.2.: Markets studied.
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Two examples where this classification is not always followed are http://globaledge.

msu.edu/ibrd/marketpot.asp where where Hong Kong and Singapore are considered as
emerging markets and http://www.msci.com/equity/indexdesc.html where Austria,
Belgium, Denmark, Finland, Greece, Hong Kong, Ireland, Norway, Portugal, Singapore
are considered as developed markets.

5.3.3. Classification of global markets (TSDFA)

It seems clear from the results that we can distinguish different markets classes. The
difference in behaviour is visible with the application of TSDFA. The most active, and
mature, markets show a persistence of behaviour near H = 0.5 while the newer, emergent,
markets show a persistence of higher values of H. The diversity of behaviours does not
stop here, there are markets which show an hybrid behaviour between these two states.

The classification that we propose has thus three states:

(clearly) mature these market have a persistence of H around 0.5. The presence of regions
with higher values of H is limited to small periods and is well defined both in time
and scale.

(clearly) emergent these market have a persistence of H well above 0.5. The presence of
regions with values of H around 0.5 is well defined both in time and scale.

hybrid unlike the two previous case the distinction between the mature and emergent
phases is not well determined, with the behaviour seemingly mixing at all scales.

This classification is in agreement with another based on wavelet analysis proposed in
Sharkasi et al. [2006b].

We have taken this classification and have applied it to the markets present in Ap-
pendix A where the markets are grouped according to it.

5.4. Conclusions

Our results, presented here and in Matos et al. [2006b], clearly show that the differences
between worldwide markets can not simply be reduced to the simple distinction between
emerging and mature markets. In some cases, an evolution or a change of regime from
one state to the other can be seen clearly from this analysis.

There are certain events that are clearly reflected in all markets, as expected since most
events are due to external causes, and thus independent of the specific market. One event
where this is clearly seen is the 9/11 (September 11th 2001) attack against the World
Trade Center towers (NY). In all the markets this is clearly seen, both in markets present
here and in Appendix A, where the same type of analysis reveals the same dominant stripe
appearing around September 2001.
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5. Time and Scale Detrended Fluctuation Analysis (TSDFA)

In general our results show also that mature markets tend to absorb shocks more quickly
and to learn with them. For hybrid markets, the borders are not so well defined. We
see entangled stripes of mature and emergent behaviour, while for mature and emergent
markets the regions are better resolved with a clear dominance of mature or emergent
behaviours, respectively.

A trend common to most markets (mature and emergent) is the progressive “matura-
tion”, i.e. H(t, s) has been decreasing over time for most of the studied markets. One
possible reason to this is the progressive globalisation of markets, where the arbitrage
opportunities are reduced thus producing more efficient markets.
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6. Entropy Measures

“If knowledge can create problems, it is not through ignorance that we can
solve them.” - Isaac Asimov

6.1. Introduction

The subject of this Chapter was previously explored in Matos et al. [2006a] and is expanded
here.

Two techniques, not previously used in this thesis, are applied here: entropy (Section 6.2)
and covariance matrices (Section 6.3). The purpose of this analysis is to search for signs
of coherence and/or synchronisation across the set of studied global markets. The use of
covariance matrices generalises the techniques applied previously to a multivariate frame-
work, the study of several stochastic processes at once. We use the covariance matrices
also to study the dependence of the results on the time granularity considered.

The purpose of entropy and coherence techniques is to examine the market behaviour.
We apply econophysics techniques related to measures of “disorder”/complexity (entropy)
and also discuss the relation between those results and the results from TSDFA, studied
in the previous Chapter.

Finally, in Section 6.4 we present the conclusions.

6.2. Entropy

We have applied the Shannon entropy for blocks of size 5 and an alphabet of 50 symbols,
as described in Section 2.9, to a set of markets previously studied. We should recall that
using blocks of size 5 corresponds to a week in trading time. Notice also that we have only
considered trading days, like what we do in all other analysis, so we ignore any holidays
or days where the market was closed.

It should be noted that results are robust to the choice of the total number of bins (the
size of our alphabet). That is, we have repeated the analysis with a different choice of the
number of partitions yielding similar results.

In order to enhance the time dependence of results we have evaluated the entropy of the
set for periods of 100 trading days (roughly corresponding to half a year). The motivation
for this analysis is the same used in Chapters 4 and 5, to study the time evolution of
entropy.
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Figure 6.1.: Weekly entropy for various market indexes.

The results displayed in Figure 6.1 show improved coherence (i.e. reduced entropy)
after 1997 as compared with previous periods for all markets. Higher entropy implies less
predictability, in general, although the nature of shocks qualifies this statement to some
extent. The notable feature of this graphic is that both mature and developing markets
are affected similarly which suggests that global behaviour patterns are becoming more
coherent or linked because of the progressive globalisation of markets. This is in line with
the findings of Chapter 5 where we found the Hurst exponent for different markets to be
decreasing with time.

6.3. Covariance matrices

In the previous section we have used the block entropy applied to several markets. The
analysis of co-movements suggested a multivariate analysis. This method shares with
block entropy applied in the previous Section the emphasis on time dependency.

The work explored here was developed, by the author and collaborators, in Sharkasi
et al. [2006a]. We use the covariance matrix to study the coherence of various set of mar-
kets, with different degrees of maturity, (for this study we have considered the traditional
distinction between mature and emerging markets as the initial point). We are interested
in the time dependency of the (three) most significant eigenvalues of the covariance ma-
trix, since as seen in Section 2.10, those are the only eigenvalues which carry meaningful
information.
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Figure 6.2.: Evolution of for λ1
λ3

emerging markets.

We have use the covariance matrix as defined in Section 2.10. We have used the typical
value of parameters, R = 0.9 and an horizon of 20 trading days, (for details see Litterman
and Winkelmann [1998]). In line with the analysis of the previous Section, weekly periods
have been used to estimate the returns.

In Figure 6.2, we represent the ratio between the first and the third most important
eigenvalues (λ1

λ3
) for a given set of emerging markets. The same analysis applies for mature

markets, see Figure 6.3.

Again, interest lies in the fact that spikes in Figures 6.2 and 6.3 correlate with real
events, as summarised in Tables 6.1 and 6.2, respectively.

We have considered the evolution of the major eigenvalues assuming weekly data. Ap-

Mark Window No Last week included Events
a1 5 first week of 7/1997 Asian Crash
a2 23 second week of 11/1997 Asian Crash
a3 62 fourth week of 8/1998 Global Crash
a4 130 second week of 1/2000
a5 176 second week of 12/2000 Effects of DotCom Crash
a6 186 second week of 3/2001
a7 212 second week of 9/2001 September 11th Crash
a8 227 fourth week of 1/2002

Table 6.1.: Table of events (emerging).
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Figure 6.3.: Evolution of λ1
λ3

for mature markets.

Mark Window No Last week included Events
b1 65 first week of 9/1998 Global Crash
b2 84 fourth week of 12/1998 Global Crash
b3 121 third week of 10/1999 Last October in the 20th Century
b4 153 second week of 6/2000 DotCom Crash
b5 220 second week of 9/2001 September 11th Crash
b6 225 first week of 11/2001 Effects of 9/11 Crash
b7 231 second week of 12/2001 Effects of 9/11 Crash
b8 259 first week of 5/2002 The Stock Market Downturn
b9 322 first week of 10/2003
b10 331 first week of 12/2003 General Threat Level Raised
b11 345 third week of 3/2004 Madrid Bomb

Table 6.2.: Table of events (mature).
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Figure 6.4.: Evolution of eigenvalue ratios for emergent markets (daily data).

plying the same analysis for daily data we get the results displayed in Figures 6.4 and 6.5.
This analysis highlights the role of the data granularity, the coarse grained approach, in
the results. We have a better resolution on the events and the results are qualitatively the
same.

6.4. Conclusions

We have focused on aspects of time dependence, explored by several econophysics tech-
niques, applied to markets, categorised as emerging or mature and subject to diverse levels
of disorder or volatility in their financial series. The outcome shows clear synchronisation
of world markets, observed in the weekly entropy of individual markets or groups. The
results show that world markets tend to influence each other and reduce individual market
levels of disorder (i.e. reduced entropy) demonstrating a clear synchronism of responses
which is more or less robust depending on the nature of the market. The entropy measure
here is considered over a week, a fairly long time in terms of market behaviour, but the
results obtained for daily results show the same qualitatively behaviour.

Despite evidence that stability is linked to this synchronisation and low energy or equi-
librium state, it is evident that shocks upset the balance and disorder increases with very
high entropy levels in some instances. These occurrences correspond usually to crashes
in markets, as it can be seen associating the events in Tables 6.1 and 6.2 with their cor-
responding spikes in Figures 6.2, 6.3, 6.4 and 6.5. Nevertheless it is a characteristic of
the more mature markets that this period of increased entropy is relatively short, with

95



6. Entropy Measures

1 2
λ/λ

1 3
λ/λ

2000 2001 2002 2003 2004 2005

Year

0

5

10

15

20

R
a
ti

o
Time evolution of eigenvalues ratios

Figure 6.5.: Evolution of eigenvalue ratios for mature markets (daily data).

smaller recovery times. See both in Figures 6.2 and 6.4 how it takes almost two months
for emerging markets to reflect 9/11 effects while for mature markets (Figures 6.3 and 6.5)
this effect is instantaneous.

This distinction is not always clearcut, however and under different conditions markets
may exhibit more than one type of behaviour, (see in Tables 6.1 and 6.2 where for certain
peaks we were not able to associate any known event).
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7. Conclusions

"Prediction is very difficult, especially about the future" - Niels Bohr

In this work we have addressed the analysis of financial time series from an econophysical
point of view. Financial data presents complex behaviour which needs to be decomposed
effectively. After the first order approximation the granularity in time needs to be refined in
order to determine the nature and persistence of the fluctuations observed. In particular, a
number of techniques discussed are discussed and applied to the study of memory effects,
the reaction of markets to internal and external perturbations in terms of sensitivity,
recovering times and so on.

When studying stock markets there are two useful properties to measure, the uncertainty
and the risk. These concepts are related to arbitrage, a trading strategy that generates
profit without risk, from a zero initial investment.

Entropy, described in Chapter 2, is a measure of uncertainty. This notion can be gener-
alised to cover other techniques used in this work. Taking a slightly different perspective
on the breakdown of financial signals into component elements we can consider several of
the techniques studied in Chapter 2, (wavelets; multifractals; fBm; stable laws; entropy
and time dependent covariance matrix), as entropy measures, the subject of this thesis.

The econophysics techniques applied in this work are twofold: measures of “disor-
der”/complexity and measures of coherence, (for a discussion of coherence and persistence
in the scope of financial time series see Ausloos [2001]). These techniques are in a sense
complementary, i.e. each provides a different view over the financial data studied, but
they can be placed under the umbrella of entropy measures.

The measures of complex disorder are the entropy, as presented in Section 2.9, and the
fractional Brownian motion, (see Section 2.7), using the generalisation defined in the last
Chapter. The connection of fBm with entropy is simple. For values of H larger than
0.5 the increments are correlated and if we increase the exponent H that implies smaller
uncertainty and thus smaller entropy. If we decrease H then entropy increases. Notice
that these measures are not equivalent, fBm does not take into account the clusters of
volatility while the entropy does, (for a discussion of entropy when compared with other
uncertainty measures see Maasoumi and Racine [2002], McCauley [2003]).

Another measure of entropy, presented in Chapter 2, is multifractal analysis. The re-
lation between entropy and multifractals can be established through D1, the information
dimension, or through the relation between the moments that we explore in both multi-
fractals and the Rényi entropies, or Kolmogorov-Sinai entropies.
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7. Conclusions

Wavelets, (Section 2.4), allow the decomposition of the signal into components for the
same scale. This decomposition allows to study the entropy content carried by each scale
detail. For multifractals this dependence is expressed in the moments, (this relation can
carried further along, see Doukhan et al. [2003] for methods of evaluating multifractals us-
ing wavelets). For fBm we have explored a similar path examining the H(s, t) dependence
in the previous Chapter.

If entropy is disorder, implying lack of a common trading strategy, then coherence
implies cooperative, or at least common tendencies in, behaviour. We use the covariance
matrix, (see Section 2.10), as a measure of coherence among a closely related set of markets.
Coherence can be either observed between each time series, like in TSDFA, or between
different time series as we study in the covariance matrix analysis. Since world markets
are correlated the entropy of the set of markets is smaller than the sum of individual
entropies.

In Chapter 3 the emphasis is made on the use of Free Software and the repeatability of
results. Appendices C and D, discuss into further detail the options chosen.

The first application of the techniques toolbox is PSI-20 (Portuguese Stock Index - 20),
a Portuguese index of the 20 most liquid assets of the Portuguese Stock market.

Following the work on PSI-20 a new method is propose for studying the Hurst expo-
nent, which includes investigation of both time and scale dependency. This approach
permits the recovery of major events, affecting worldwide markets, (such as Sept. 11th
2001) and facilitates examination of the propagation of effects produced across different
scales. Such effects may include early awareness, distinctive patterns of recovery, as well
as comparative behaviour distinctions in emergent/established markets. The emphasis on
time dependence serves to demonstrate the importance of entropy measures as snapshots
of market uncertainty, which have their own dynamic.

We developed and applied a new technique, the TSDFA (Time and Scale Detrended
Fluctuation Analysis), to study the time evolution of each market. Major features may
include transition from a developing to a mature state, (International Finance Corporation
definition). Comparing the results obtained using TSDFA to all markets, we identify
groups that display similar behaviour at any given time. This classification allow us to
distinguish perturbations with global or more general effect, (e.g. Asian tiger crash, 9/11,
Madrid bomb attack in 2004 and others) from local influences affecting a small set of
markets or even a single market only.

Interestingly, in spite of known differences between emerging and established markets,
the evidence suggests that, in recent years, entropy measures are convergent across markets
studied worldwide. This can be construed as an increasing number of markets achieving or
mimicking mature behaviour relatively rapidly, irrespectively of their trading capability,
which suggests that windows of opportunity are narrowing for investors since the arbitrage
opportunities are reduced due to more efficient markets.
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7.1. Future work

7.1. Future work

Variants of the techniques presented in this work were not explored but show potential for
further studies. Those topics, with a small discussion, are raised next.

In this thesis all analyses were applied to market indices yet all the measures can be
applied to individual assets.

As stated in the begin of Chapter 5, DFA is an implementation issue. An interesting
variant is to repeat the analysis using wavelet estimation to determine H(s, t).

The scale dependency can be further extended into comparing the detail levels from
wavelet decomposition, instead of the whole time series, using the time dependent covari-
ance matrix.

Finally, when studying the covariance matrix and its most significant eigenvalues, we
could study the evolution of eigenvectors. This type of analysis should be useful to pick
sudden jumps when the main eigenvectors changes suddenly, instead of smooth time de-
pendency.
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A. Classification of Global Markets

“Ex nihilo nihil fit - Nothing comes out of nothing.” - René Descartes

In this Appendix we classify each of the markets studied, (Table 5.2), according to the
classification defined in Chapter 5. We present for each market studied:

• Country and name of the index

• Lévy parameter α and β. α is the exponent of the tail of the distribution and β is the
asymmetry parameter, β = −1 means that the distribution is a left side, i.e. there
is a value X such that for P (x > X) = 0. β = 1 means a right side distribution,
similar to the previous case but on the other side. β = 0 means that the distribution
is symmetric.

• Historical index values.

• Historical return values.

• TSDFA applied to the time series.

As previously described, all analyses deal with returns, as e.g. prices can be problematical
due to currency exchanges. For each market therefore, we illustrate the original time series
and the returns. The same scale is used for all plots to place comparisons in a context
where they can be understood. These plots are for the entire length of the time series in
each case and clearly cover a longer period for some countries compared to others. The
plot of returns allows us to determine the volatility clusters.

We also plot the resulting graphics of applying the TSDFA starting only at 1990. A rigid
scale is used to ease the comparison between markets, of major features/events occurring
during this period.
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A. Classification of Global Markets
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A.1. Mature

A.1. Mature

Netherlands (AEX General)

Lévy:(α, β) = (1.583, 0.146)
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A. Classification of Global Markets

United States (Dow Jones)

Lévy:(α, β) = (1.563,−0.079)
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A.1. Mature

France (CAC 40)

Lévy:(α, β) = (1.764, 0.143)
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A. Classification of Global Markets

United Kingdom (FTSE 100)

Lévy:(α, β) = (1.769, 0.001)
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A.1. Mature

Germany (DAX)

Lévy:(α, β) = (1.665, 0.142)
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A. Classification of Global Markets

United States (500 Index)

Lévy:(α, β) = (1.676,−0.085)
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A.1. Mature

United States (Nas/NMS Composite (Nasdaq))

Lévy:(α, β) = (1.453,−0.243)
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A. Classification of Global Markets

South Korea (Seoul Composite)

Lévy:(α, β) = (1.698, 0.004)
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A.1. Mature

Japan (Nikkei 225)

Lévy:(α, β) = (1.648, 0.118)
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A. Classification of Global Markets

United States (NYSE COMPOSITE INDEX)

Lévy:(α, β) = (1.720,−0.084)
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A.1. Mature

Sweden (Stockholm General)

Lévy:(α, β) = (1.758, 0.000)
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A. Classification of Global Markets
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A.2. Hybrid

A.2. Hybrid

Australia (All Ordinaries)

Lévy:(α, β) = (1.827, 0.257)
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A. Classification of Global Markets

Brazil (Bovespa)

Lévy:(α, β) = (1.670,−0.002)
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A.2. Hybrid

Canada (S&P TSX Composite)

Lévy:(α, β) = (1.625,−0.001)
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A. Classification of Global Markets

Russia (Moscow Times)

Lévy:(α, β) = (1.545, 0.054)
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A.2. Hybrid

New Zealand (NZSE 10)

Lévy:(α, β) = (1.743,−0.006)
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A. Classification of Global Markets

Spain (Madrid General)

Lévy:(α, β) = (1.785, 0.003)
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A.2. Hybrid

Switzerland (Swiss Market)

Lévy:(α, β) = (1.701, 0.179)
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A. Classification of Global Markets
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A.3. Emerging

A.3. Emerging

Austria (ATX)

Lévy:(α, β) = (1.749, 0.220)
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A. Classification of Global Markets

Belgium (BEL-20)

Lévy:(α, β) = (1.578,−0.002)
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A.3. Emerging

India (BSE 30)

Lévy:(α, β) = (1.789, 0.266)
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A. Classification of Global Markets

Egypt (CMA)

Lévy:(α, β) = (1.466,−0.154)
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A.3. Emerging

Sri Lanka (All Share)

Lévy:(α, β) = (1.457,−0.038)
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A. Classification of Global Markets

Hong Kong (Hang Seng)

Lévy:(α, β) = (1.620,−0.002)
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A.3. Emerging

Chile (IPSA)

Lévy:(α, β) = (1.897,−0.011)
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A. Classification of Global Markets

Ireland (ISEC Small Cap)

Lévy:(α, β) = (1.863,−0.001)
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A.3. Emerging

Ireland (ISEC Small Cap Techno)

Lévy:(α, β) = (1.911, 1.000)
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A. Classification of Global Markets

Ireland (Irish SE Index)

Lévy:(α, β) = (1.724, 0.331)
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A.3. Emerging

Indonesia (Jakarta Composite)

Lévy:(α, β) = (1.532,−0.064)
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A. Classification of Global Markets

Denmark (KFX)

Lévy:(α, β) = (1.744, 0.149)
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A.3. Emerging

Malaysia (KLSE Composite)

Lévy:(α, β) = (1.482,−0.003)
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A. Classification of Global Markets

Pakistan (Karachi 100)

Lévy:(α, β) = (1.560, 0.189)
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A.3. Emerging

Argentina (MerVal)

Lévy:(α, β) = (1.554, 0.008)
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A. Classification of Global Markets

Italy (MIBTel)

Lévy:(α, β) = (1.781,−0.002)
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A.3. Emerging

Mexico (IPC)

Lévy:(α, β) = (1.685,−0.005)
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A. Classification of Global Markets

Norway (OSE All Share)

Lévy:(α, β) = (1.810,−0.002)
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A.3. Emerging

Philippines (PSE Composite)

Lévy:(α, β) = (1.592,−0.003)
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A. Classification of Global Markets

Portugal (PSI 20)

Lévy:(α, β) = (1.595,−0.001)

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

1990 1992 1994 1996 1998 2000 2002 2004 2006

time

 100

 150

 200

 250

 300

 350

 400

sc
al

e

142



A.3. Emerging

Czech Republic (PX50)

Lévy:(α, β) = (1.855, 0.288)
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A. Classification of Global Markets

China (Shanghai Composite)

Lévy:(α, β) = (1.641, 0.010)
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A.3. Emerging

Singapore (Straits Times)

Lévy:(α, β) = (1.622,−0.008)
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A. Classification of Global Markets

Israel (TA-100)

Lévy:(α, β) = (1.784, 0.017)
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A.3. Emerging

Taiwan (Taiwan Weighted)

Lévy:(α, β) = (1.796, 0.001)
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A. Classification of Global Markets

Turkey (ISE National-100)

Lévy:(α, β) = (1.700,−0.000)
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B. Stable Distributions

“Three Rings for the Elven-kings under the sky,
Seven for the Dwarf-lords in their halls of stone,
Nine for Mortal Men doomed to die,
One for the Dark Lord on his dark throne
In the Land of Mordor where the Shadows lie.
One Ring to rule them all, One Ring to find them,
One Ring to bring them all and in the darkness bind them
In the Land of Mordor where the Shadows lie.” - J. R. R. Tolkien (The Lord

of the Rings)

B.1. Statistical Distributions

The following statistical distributions are used in Section 2.8.

Example B.1.1. Gamma

Γ(x) =
∫ +∞

0
tz−1e−tdt

For n ∈ N, Γ(n) = (n− 1)!
As we can see in Figure B.1 this function has discontinuities at negative integers where

the function changes its sign.

Example B.1.2. Gaussian

f(x) =
1√
2πσ

exp(−(x− µ)2

2σ2
), −∞ < x <∞.

Example B.1.3. Cauchy

f(x) =
1
π

γ

γ2 + (x− δ)2
, −∞ < x <∞.

Example B.1.4. Lévy distribution

f(x) =
√

γ

2π
1

(x− δ)3/2
exp(− γ

2(x− δ)
), δ < x <∞

In Figure B.2 we can see the difference between the three families of stable distributions.
For easier comparison the location and the scale parameters are the same.
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B. Stable Distributions

Figure B.1.: Gamma function

Figure B.2.: Compararison between the three stable distributions with closed formula
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B.2. Stable distributions parametrisation

B.2. Stable distributions parametrisation

To uniquely identify a stable distribution we need four parameters:

• α index of stability or characteristic exponent, 0 < α ≤ 2

• β skewness parameter, −1 ≤ β ≤ 1

• γ scale parameter, γ > 0

• δ location parameter, δ ∈ R.

There are several notations used, the traditional is Sα(γ, β, δ), while here we will use
S(α, β, γ, δ; k), k is the kind of parametrisation.

B.2.1. Comparison between parametrisation

There are two reasons for the existence of different parametrisation: historical evolution
and its use in different areas.

Parametrisation k = 0

Definition B.2.1. A random variable X is S(α, β, γ, δ; 0) if

X
d=

γ(Z − β tan πα
2 ) + δ α 6= 1

γZ + δ α = 1

where Z = Z(α, β), (defined in relation 2.77).

This parametrisation is used in numerical work or fit data (statistical inference). It has
the simplest form of the characteristic function that is continuous in all parameters and
lets α and β to determine the shape of the distribution, while γ and δ determine the scale
and location in the standard way. If X ∼ S(α, β, γ, δ; 0) then (X−δ)

γ ∼ S(α, β, 1, 0; 0).

Parametrisation k = 1

Definition B.2.2. A random variable X is S(α, β, γ, δ; 1) if

X
d=

γZ + δ α 6= 1

γZ + (δ + β 2
πγ log γ) α = 1

where Z = Z(α, β).

This parametrisation has the simple algebraic properties of distribution and the simple
form of the characteristic function. This parametrisation is the most used when studying
distribution properties.
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B. Stable Distributions

The distribution is standardised when γ = 1, δ = 0. We use the shorthand notation
S(α, β; 0) and S(α, β; 1) respectively. We can relate the different parametrisations as

Z(α, β) = S(α, β, 1,−β tan
πα

2
; 0) = S(α, β, 1, 0; 1).

Notice that parametrisation 0 and 1 are equal if β = 0, i.e if the distribution is sym-
metrical.

Parametrisation k = 2

There is a third parametrisation that is used to study of analytical properties of strictly
stable laws. It distincts from the previous since the location parameter is at the mode,
the scale parameter agrees with the standard scale parameter in the Gaussian and Cauchy
cases. Technically it is more cumbersome but also more intuitive for applications.

B.2.2. Densities and distribution functions

There are no explicit formulae for general stable densities.

Theorem B.2.3. All (non-degenerate) stable distributions are continuous distributions
with an infinitely differentiable density.

In what follows we use the following notation:

f(x|α, β, γ, δ; k) probability density function,

F (x|α, β, γ, δ; 0) cumulative density function.

Lemma B.2.4. The support of a stable distribution in the different parametrisation is

supp f(x|α, β, γ, δ; 0) =


[δ − γ tan πα

2 ,+∞) α < 1 and β = 1

(−∞, δ + γ tan πα
2 ) α < 1 and β = −1

(−∞,+∞) otherwise

supp f(x|α, β, γ, δ; 1) =


[δ,+∞) α < 1 and β = 1

(−∞, δ) α < 1 and β = −1

(−∞,+∞) otherwise

Proposition B.2.5. Reflection property. For any α and β, Z ∼ S(α, β; k), k = 0, 1, 2

Z(α,−β) d= −Z(α, β).

Therefore the density and distribution function of Z(α, β) satisfy f(x|α, β; k) = f(−x|α,−β; k)
and F (x|α, β; k) = 1− F (−x|α,−β; k).
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B.2. Stable distributions parametrisation

Proposition B.2.6. When 1 < α ≤ 2, the mean of X ∼ S(α, β, γ, δk; k), for k = 0, 1, 2,
is

µ = E[X] = δ1 = δ0 − βγ0 tan
πα

2
.
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C. Software

“Ken Thompson, co-inventor of Unix, is reported to have uttered the epi-
gram "When in doubt, use brute force". He probably intended this as "a ha ha
only serious", but the original Unix kernel’s preference for simple, robust, and
portable algorithms over brittle "smart" ones does seem to have been a signifi-
cant factor in the success of that OS. Like so many other tradeoffs in software
design, the choice between brute force and complex, finely-tuned cleverness is
often a difficult one that requires both engineering savvy and delicate esthetic
judgment.” - Eric S. Raymond (The Jargon File)

The author has developed a Python module for analysing the financial time series, as
follows.

One of the approaches of this module was to hide some of the low levels details within
this implementation. This allowed us to change the internal implementation several times
while retaining the client code unmodified due to the stable API (application program
interface).

Listing C.1: Module information
1 # Copyright (C) 2005 -2006 José Matos <jamatos@fc .up.pt >
2 #
3 # This program is free software ; you can redistribute it and/or
4 # modify it under the terms of the GNU General Public License
5 # as published by the Free Software Foundation ; either version 2
6 # of the License , or (at your option ) any later version .
7 #
8 # This program is distributed in the hope that it will be useful ,
9 # but WITHOUT ANY WARRANTY ; without even the implied warranty of

10 # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE . See the
11 # GNU General Public License for more details .
12 #
13 # You should have received a copy of the GNU General Public License
14 # along with this program ; if not , write to the Free Software
15 # Foundation , Inc., 59 Temple Place - Suite 330, Boston , MA

02111 -1307 , USA.
16

17 __all__ = ["data", "tools", " correlation ", "dfa", " entropy ", "
multifractal ", "rmd"]

Listing C.2: TimeSeries: correlation
1 #!/ usr/bin/ python
2 # -*- coding : utf -8 -*-
3 # Copyright (C) 2006 José Matos <jamatos@fc .up.pt >
4 #
5 # This program is free software ; you can redistribute it and/or
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6 # modify it under the terms of the GNU General Public License
7 # as published by the Free Software Foundation ; either version 2
8 # of the License , or (at your option ) any later version .
9 #

10 # This program is distributed in the hope that it will be useful ,
11 # but WITHOUT ANY WARRANTY ; without even the implied warranty of
12 # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE . See the
13 # GNU General Public License for more details .
14 #
15 # You should have received a copy of the GNU General Public License
16 # along with this program ; if not , write to the Free Software
17 # Foundation , Inc., 59 Temple Place - Suite 330, Boston , MA

02111 -1307 , USA.
18

19 # José Matos
20 # FCUP - Porto
21 # 2006/05/12
22

23 import numpy as N
24 from numpy. linalg import Heigenvalues
25 import datetime
26

27 # Todo:
28 # * Use an helper function to say what are the possible dates for a

given set of markets
29

30 def cor_pair (period , m1 , m2 , R, T):
31 wsum , csum , samples = .0, .0, 0
32 for i in range(T+1):
33 w = R**-(T-i)
34 time_step = period [i][1]
35 if m1 in time_step and m2 in time_step :
36 wsum += w
37 csum += w* time_step [m1]* time_step [m2]
38 samples += 1
39

40 if samples :
41 return csum/wsum
42 else:
43 #print period [0][0] , m1 , m2
44 return .0
45

46

47 def correlation_matrix (period , markets , R, T):
48 lm = len( markets )
49 cor = N.zeros ((lm ,lm),N.Float)
50 for i in range(lm):
51 for j in range(i):
52 cor[i,j] = cor_pair (period , markets [i], markets [j], R, T)
53 cor[j,i] = cor[i,j]
54 cor[i,i] = cor_pair (period , markets [i], markets [i], R, T)
55

56 return cor
57

58

59 def correlation ( series_collection , markets , R= 0.9, T= 20):
60

61 vals = sorted ( series_collection .items ())
62 # initial seed
63 period = (None ,) + tuple(vals [:T])
64

65 eigen = []
66 date = []
67 for d in vals[T:]:
68 period = period [1:] + (d, )
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69 date. append (d[0])
70 cor = correlation_matrix (period , markets , R, T)
71 eigen. append ( sorted ( Heigenvalues (cor), reverse =True))
72

73 return date , N.array(eigen)

Listing C.3: TimeSeries: data
1 #!/ usr/bin/ python
2 # -*- coding : utf -8 -*-
3 # Copyright (C) 2004 -2006 José Matos <jamatos@fc .up.pt >
4 #
5 # This program is free software ; you can redistribute it and/or
6 # modify it under the terms of the GNU General Public License
7 # as published by the Free Software Foundation ; either version 2
8 # of the License , or (at your option ) any later version .
9 #

10 # This program is distributed in the hope that it will be useful ,
11 # but WITHOUT ANY WARRANTY ; without even the implied warranty of
12 # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE . See the
13 # GNU General Public License for more details .
14 #
15 # You should have received a copy of the GNU General Public License
16 # along with this program ; if not , write to the Free Software
17 # Foundation , Inc., 59 Temple Place - Suite 330, Boston , MA

02111 -1307 , USA.
18

19 # José Matos
20 # School of Computing , DCU
21 # 2004/10/08
22

23 """ The goal of this module is centralize data access trough a single
24 point , and hide the implementation details in a single place , in turn
25 this avoids the different copies available everywhere otherwise ."""
26

27 import os
28 from os import path
29 import sys
30 import numpy as N
31 from glob import glob
32 import tools
33

34 ##
35 # Private part: implementation , the details are subject to change
36 #
37 # To make this process more general we could read this location from a
38 # hidden file in $HOME , for the moment this is fix
39

40 __data_dir = "%s/ research / econophysics /data/ indices /" % os. getenv (’HOME
’)

41 __doc_dir = "%s/ research / econophysics /data/doc/" % os. getenv (’HOME ’)
42

43 def __read_from (name , col , sep=","):
44 filename = __data_dir + name + ’.csv ’
45 return [float(line [: -1]. split(sep)[col ]) for line in
46 open( filename ) if line [:1] != "#"]
47

48

49 # We need some way of getting automatically the information from the
50 # different styles from the data files. Perhaps placing this in the
51 # header in the top of file.
52 def __read_dates_from (name):
53 " Returns the value at closing from market _name_ "
54 filename = __data_dir + name + ’.csv ’
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55 return [( int(line [:4]) , int(line [4:6]) , int(line [6:8]) )
56 for line in open( filename ) if line [:1] != "#"]
57

58 ##
59 # Public part
60 #
61 def read(name):
62 "This should take care of all the details related with data."
63 return N.array( __read_from ( name , 6, ’,’), N.Float)
64

65

66 def read_dates (name):
67 "This return the available dates for each market "
68 return __read_dates_from ( name)
69

70

71 def markets ():
72 " Returns a list of the available markets with data."
73 names = sorted (glob( __data_dir + ’*. csv ’))
74 return [path. basename (name). replace (".csv","") for name in names]
75

76

77 def get_markets_info ():
78 " Return a dictionary of markets information indexed by the market

name"
79 info = {}
80 field = ["tick","name"," country "," location ","state"]
81 filename = __doc_dir + "data.csv"
82 vals = [line [: -1]. split(’,’) for line in open( filename ) if line [:1]

!= "#"]
83 for line in vals:
84 market = line [0]. lower (). replace (’^’,’’)
85 part = {}
86 for i, name in enumerate (field):
87 part[name] = line[i]. replace (’"’,’’)
88 part[" market "] = market
89 info[ market ] = part
90

91 return info
92

93

94 def interesting_markets ():
95 """ Returns a list of markets with interesting
96 properties , it usual is a placeholder to be later replaced by
97 markets ."""
98 return ’bvsp ’, ’ftse ’, ’isct ’, ’iseq ’, ’isci ’, ’n225 ’, ’psi20 ’, ’

gspc ’
99

100

101 def close_series (name):
102 """ Returns a list whose members are a tuple with the date and a

value ,
103 this time series is sorted ."""
104 return sorted (zip( read_dates (name), read(name)))
105

106

107 def close_returns (name):
108 """ Returns a list whose members are a tuple with the date and a
109 return value , this time series is sorted ."""
110 return sorted (zip( read_dates (name)[1:] , tools. returns (read(name))))
111

112

113 def get_returns_collection (markets , begin = None , end = None):
114 # value of returns
115 rets = {}
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116

117 for m in markets :
118 for date , val in close_returns (m):
119 if begin and date < begin:
120 continue
121 if end and date > end:
122 continue
123 if date in rets:
124 rets[date ][m] = val
125 else:
126 rets[date] = {m: val}
127

128 return rets
129

130

131 def cutter (x, begin= None , end= None):
132 """ Returns a list of values that follow inside of the given

interval ."""
133

134 if begin:
135 for date , value in x:
136 if date >= begin:
137 y = (date , value)
138

139 else:
140 if not end:
141 return x

Listing C.4: TimeSeries: DFA
1 # Copyright (C) 2005 -2006 José Matos <jamatos@fc .up.pt >
2 #
3 # This program is free software ; you can redistribute it and/or
4 # modify it under the terms of the GNU General Public License
5 # as published by the Free Software Foundation ; either version 2
6 # of the License , or (at your option ) any later version .
7 #
8 # This program is distributed in the hope that it will be useful ,
9 # but WITHOUT ANY WARRANTY ; without even the implied warranty of

10 # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE . See the
11 # GNU General Public License for more details .
12 #
13 # You should have received a copy of the GNU General Public License
14 # along with this program ; if not , write to the Free Software
15 # Foundation , Inc., 59 Temple Place - Suite 330, Boston , MA

02111 -1307 , USA.
16

17 from tools import fit
18 import numpy as N
19 import math
20

21

22 def _interval_residual (slice):
23 return fit(N. arange (len(slice), dtype=N.Float), slice , True)[2]
24

25

26 def _F2(t, x):
27 sum = 0.0
28 for i in range(len(x)-t+1):
29 sum += _interval_residual (x[i:i+t])
30

31 return sum /( len(x)-t+1)/t
32

33
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34 def sample_size (n, min_box = 0, max_box = 0):
35 if not min_box : min_box = 4
36 if not max_box : max_box = n/4
37 log_scale = 1.2
38 res = [ min_box ]
39 cand = min_box
40 while res [-1] < max_box :
41 tmp = cand
42 cand *= log_scale
43 while int(cand) == int(tmp):
44 cand *= log_scale
45 res. append (int(cand))
46 return res
47

48

49 def dfa(y, sizes = None):
50 n = len(y)
51 if sizes == None:
52 sizes = sample_size (n)
53

54 result = N.sqrt ([ _F2(i, y) for i in sizes ])
55 ny = N.log( result )
56 (a,b), res , sqr2= fit(N.log(sizes), ny , True)
57 sxx , sxy , syy = res [0,0], res [1,0], res [1 ,1]
58 sy = N.sum(ny)
59 syy = N.sum(ny*ny)
60 return a, math.sqrt (1. - n*sqr2 /(n*syy -sy*sy))
61

62

63 if __name__ == " __main__ ":
64 pass

Listing C.5: TimeSeries: entropy
1 #!/ usr/bin/ python
2 # Copyright (C) 2005 -2006 José Matos <jamatos@fc .up.pt >
3 #
4 # This program is free software ; you can redistribute it and/or
5 # modify it under the terms of the GNU General Public License
6 # as published by the Free Software Foundation ; either version 2
7 # of the License , or (at your option ) any later version .
8 #
9 # This program is distributed in the hope that it will be useful ,

10 # but WITHOUT ANY WARRANTY ; without even the implied warranty of
11 # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE . See the
12 # GNU General Public License for more details .
13 #
14 # You should have received a copy of the GNU General Public License
15 # along with this program ; if not , write to the Free Software
16 # Foundation , Inc., 59 Temple Place - Suite 330, Boston , MA

02111 -1307 , USA.
17

18 import numpy as N
19 import math
20 import TimeSeries
21 from TimeSeries .tools import diff , basic_statistics , max , min
22 from TimeSeries import data
23

24

25 #
#########################################################################

26 # Helper functions
27 #
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28 def _entropy (seq , word_size ):
29 frequency = {}
30 size = len(seq)
31

32 step =1
33 total = size -word_size +1
34

35 for i in range (0, size - word_size + 1, step):
36 word = seq[i:i + word_size ]
37 if word not in frequency :
38 frequency [word] = 1
39 else:
40 frequency [word] += 1
41

42 result = 0
43 nstates = 0
44

45 for word , value in frequency .items ():
46 nstates += 1
47 p = value/float(total)
48 result -= p*math.log(p)
49

50 return result , nstates , total
51

52

53 def running_entropy (seq , word_size , window_length ):
54 frequency = {}
55

56 assert window_length <= len(seq)
57

58 for i in range( window_length - word_size + 1):
59 word = seq[i:i + word_size ]
60 if word not in frequency :
61 frequency [word] = 1
62 else:
63 frequency [word] += 1
64

65 total = window_length - word_size + 1
66

67 # evaluate entropy for the first block
68 result = 0
69 for word , value in frequency .items ():
70 p = value/float(total)
71 result -= p*math.log(p)
72

73 running_value = [ result ]
74

75 i_min = 0
76 i_max = total
77 for i in range(total , len(seq) - word_size +1):
78 word_out = seq[i_min: i_min + word_size ]
79 word_in = seq[i_max: i_max + word_size ]
80

81 if word_in != word_out :
82

83 # before
84 p_out = frequency [ word_out ]/ float(total)
85 result += p_out * math.log(p_out)
86

87 if word_in in frequency :
88 p_in = frequency [ word_in ]/ float(total)
89 result += p_in * math.log(p_in)
90 else:
91 frequency [ word_in ] = 0
92
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93 # after
94 frequency [ word_out ] -= 1
95 if frequency [ word_out ] == 0:
96 del frequency [ word_out ]
97 else:
98 p_out = frequency [ word_out ]/ float(total)
99 result -= p_out * math.log(p_out)

100

101 frequency [ word_in ] += 1
102 p_in = frequency [ word_in ]/ float(total)
103 result -= p_in * math.log(p_in)
104

105 running_value . append ( result )
106

107 i_min += 1
108 i_max += 1
109

110 return running_value
111

112

113 def frequency_counter (seq):
114 frequency = {}
115 for item in seq:
116 if item not in frequency :
117 frequency [item] = 1
118 else:
119 frequency [item] += 1
120 return frequency .items ()
121

122

123 def partition (seq , bins , min = 0, max = 0):
124 # Take a copy of the sequence , so that we don ’t change it.
125 tmp_seq = seq.copy ()
126 if max == min:
127 max = N. maximum . reduce (seq)
128 min = N. minimum . reduce (seq)
129

130 # the delta factor is used to avoid have the maximum in a single
category

131 max += (max -min) * 1e-8
132

133 tmp_seq -= min
134 tmp_seq *= bins /( max - min)
135

136 return tuple( tmp_seq . astype (N.Int))
137

138

139 def centre_sequence (seq , n):
140 left = n/2
141 right = n -left
142 return seq[left:-right]
143

144

145 #
#########################################################################

146 # Class area
147 #
148 class Entropy :
149 def __init__ (self , seq , upper_lim = 30):
150 self.seq = seq
151 self. upper_lim = upper_lim
152

153

154 def shift(self , n):
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155 return tuple(self.seq[-n:]) + tuple(self.seq [:-n])
156

157

158 def running_entropy (self):
159 result = []
160 for i in range (2, self. upper_lim ):
161 val , nstates , total = _entropy (self.seq , i)
162 result . append ([i, val , nstates , total ])
163 return result
164

165

166 def __str__ (self):
167 res = ""
168 for line in self. running_entropy ():
169 for item in line:
170 res += str(item) + ’\t’
171 res += ’\n’
172 return res
173

174

175 class Entropy_lim ( Entropy ):
176 def running_entropy (self):
177 result = []
178 i = 1
179 nstates , total = 0, 1
180

181 while nstates != total and i < len(self.seq):
182 i += 1
183 val , nstates , total = _entropy (self.seq , i)
184

185 if i < len(self.seq):
186 return i
187 assert 0
188

189

190 #
#########################################################################

191 # Test Area
192 #
193 def test_random ():
194 import RandomArray
195 a = tuple( RandomArray . randint (0, 20, (10000 ,)))
196 print Entropy (a)
197

198

199 def test_granularity ():
200 a = data.read("bvsp")
201 for i in (50, 100, 200, 400 ,800 , 1600):
202 out = open(’entropy -bvsp -%.2i.dat ’ % i, ’w’)
203 print >> out , Entropy ( partition (diff(N.log(a)), i))
204 out.close ()
205

206

207 def test_saturation_limit ():
208 for market in data. markets ():
209 dat = data.read( market )
210 ret = diff(N.log(dat))
211 c = []
212 for res in range (3 ,20):
213 part = partition (ret , res)
214 c. append ((res , Entropy_lim (part). running_entropy ()))
215 out = open(’histogram -%s -%.2i.dat ’ % (market , res), ’w’)
216 for bin in frequency_counter (part):
217 print >> out , ’%d\t%d’ % bin
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218 out.close ()
219 out = open(’entropy -%s -%.2i.dat ’ % (market , res), ’w’)
220 print >> out , Entropy (part)
221 out.close ()
222 out = open(’saturate -%s.dat ’ % market , ’w’)
223 print >> out , c
224 out.close ()
225

226

227 def test_statistics ():
228 """ Basic statistics for different series ."""
229 basic_stats = {}
230

231 for market in data. markets ():
232 dat = data.read( market )
233 ret = diff(N.log(dat))
234 basic_stats [ market ] = basic_statistics (ret)
235

236 print "\t\t".join ([’market ’, ’min ’, ’max ’, ’mean ’, ’median ’, ’std ’,
’skewness ’, ’kurtosis ’])

237 for market in data. markets ():
238 print market + ’\t\t’,
239 for r in basic_stats [ market ]: print "%6lf\t" % (r,) ,
240 print
241 print "min =", min ([ basic_stats [ market ][0] for market in data.

markets ()])
242 print "max =", max ([ basic_stats [ market ][1] for market in data.

markets ()])
243

244

245 def test_partition ():
246 a = N. arange (20. , typecode = N.Float)
247 print partition (a, 10, -10, 30)
248

249

250 def test_uniffied_partition ():
251 basic_stats = {}
252 ret = {}
253 for market in data. markets ():
254 dat = data.read( market )
255 ret[ market ] = diff(N.log(dat))
256 basic_stats [ market ] = basic_statistics (ret[ market ])
257

258 low = min ([ basic_stats [ market ][0] for market in data. markets ()])
259 high = max ([ basic_stats [ market ][1] for market in data. markets ()])
260

261 for market in data. markets ():
262 for res in range (5,51, 5):
263 out = open(’entropy -%s -%.2i.dat ’ % (market , res), ’w’)
264 print >> out , Entropy ( partition (ret[ market ], res))
265 out.close ()
266

267

268 def test_running_entropy ():
269 for market in data. markets ():
270 dat = data.read( market )
271 ret = diff(N.log(dat))
272 date = data. read_dates ( market )
273

274 part = partition (ret , 50)
275 ls = []
276 window = 100
277 for ws in range (2 ,10):
278 map = {}
279 for u,v in zip( centre_sequence (date , window ),
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running_entropy (part , ws , window )):
280 map[u] = v
281 ls. append (map)
282

283 date. reverse ()
284 dict_merge ( centre_sequence (date , window ), ls , open("%s-%d.%d.

dat" %( market , 50, window ), ’w’))
285

286

287 def dict_merge (keys , maps , file):
288 for day in keys:
289 print >> file , "%d/%.2d/%.2d" % day ,
290 for map in maps:
291 if day in map:
292 print >> file , map[day],
293 else:
294 print >> file , ’?’,
295 print >> file
296

297

298 def test_running_entropy_modulus ():
299 for market in data. markets ():
300 dat = data.read( market )
301 ret = N.fabs(diff(N.log(dat)))
302 date = data. read_dates ( market )
303

304 part = partition (ret , 50)
305 ls = []
306 window = 100
307 for ws in range (2 ,10):
308 map = {}
309 for u,v in zip( centre_sequence (date , window ),

running_entropy (part , ws , window )):
310 map[u] = v
311 ls. append (map)
312

313 date. reverse ()
314 dict_merge ( centre_sequence (date , window ), ls , open("abs -%s-%d.%

d.dat" %( market , 50, window ), ’w’))
315

316

317 def test_centre_sequence ():
318 a = range (10)
319 print centre_sequence (a, 2)

Listing C.6: TimeSeries: multifractal
1 #!/ usr/bin/ python
2 # -*- coding : utf -8 -*-
3 # Copyright (C) 2005 -2006 José Matos <jamatos@fc .up.pt >
4 #
5 # This program is free software ; you can redistribute it and/or
6 # modify it under the terms of the GNU General Public License
7 # as published by the Free Software Foundation ; either version 2
8 # of the License , or (at your option ) any later version .
9 #

10 # This program is distributed in the hope that it will be useful ,
11 # but WITHOUT ANY WARRANTY ; without even the implied warranty of
12 # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE . See the
13 # GNU General Public License for more details .
14 #
15 # You should have received a copy of the GNU General Public License
16 # along with this program ; if not , write to the Free Software
17 # Foundation , Inc., 59 Temple Place - Suite 330, Boston , MA
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02111 -1307 , USA.
18

19 # José Matos
20 # FCUP - Porto
21 # 2005/06/20
22

23 import sys
24 import csv
25 import math
26 import pylab
27 import numpy as N
28 import datetime
29 from tools import fit
30

31 def scale(T):
32 rs = [2]
33 t, t_old = 2, 1
34 mult = math.sqrt (2)
35

36 while t < T:
37 if t_old != int(t):
38 rs. append (int(t))
39 t_old = int(t)
40 t *= mult
41

42 return rs
43

44

45 def mom_diff (q, d, x):
46 T = len(x)
47 s_q = .0
48 for t in range (0,T-d):
49 s_q += abs(x[t+d] - x[t])**q
50

51 return s_q / (T-d)
52

53

54 def mom(q, x):
55 T = len(x)
56 m_q = .0
57 for t in x:
58 m_q += abs(t)**q
59

60 return m_q / T
61

62

63 def general_H (x, Q):
64 T = len(x)
65 D = scale(T/4)
66

67 mm = {}
68 xx = {}
69

70 for q in Q:
71 mm[q] = mom(q, x)
72 xx[q] = []
73

74 for d in D:
75 for q in Q:
76 xx[q]. append ( mom_diff (q, d, x) / mm[q])
77

78 H = [fit(N.log(D), N.log(xx[q])/q)[0] for q in Q]
79

80 # evaluate the regression coefficient
81 if False:
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82 r = []
83 for q in Q:
84 params = fit(N.log(D), N.log(xx[q]))
85 sse = params [5]
86 sst = params [4]
87 r. append (1.- sse/sst)
88

89 return H
90

91

92 def av_dev (x, d, l, ld):
93 sum = 0.0
94 for i in range(l, ld):
95 sum += abs(x[i+d]-x[i])
96

97 return sum
98

99

100 def general_D (x, Q):
101 T = len(x)
102 D = [d for d in scale(T) if 2*d < T]
103

104 mr = {}
105 mlr = {}
106 xx = {}
107

108 for q in Q:
109 xx[q] = []
110

111 for d in D:
112 L = range (0,T -2*d)
113

114 #mlr [0] = av_dev (x, d, 0, d)
115 for l in L:
116 mlr[l] = av_dev (x, d, l, l+d)/d
117 #mlr[l] = mlr[l -1] - abs(x[l+d -1] - x[l -1]) + abs(x[l+2*d

-1] - x[l+d -1])
118

119 sum = 0
120 for l in L:
121 sum += mlr[l]
122

123 mr[d] = sum/len(L)
124

125 for q in Q:
126 sum = 0.0
127 for l in L:
128 sum += (mlr[l])**q
129 sum /= len(L)
130

131 xx[q]. append (sum / mr[d]**q)
132

133 return N.array ([- fit(N.log(D), N.log(xx[q]))[0] for q in Q])

Listing C.7: TimeSeries: tools
1 #!/ usr/bin/ python
2 # Copyright (C) 2005 -2006 José Matos <jamatos@fc .up.pt >
3 #
4 # This program is free software ; you can redistribute it and/or
5 # modify it under the terms of the GNU General Public License
6 # as published by the Free Software Foundation ; either version 2
7 # of the License , or (at your option ) any later version .
8 #
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9 # This program is distributed in the hope that it will be useful ,
10 # but WITHOUT ANY WARRANTY ; without even the implied warranty of
11 # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE . See the
12 # GNU General Public License for more details .
13 #
14 # You should have received a copy of the GNU General Public License
15 # along with this program ; if not , write to the Free Software
16 # Foundation , Inc., 59 Temple Place - Suite 330, Boston , MA

02111 -1307 , USA.
17

18 import sys
19

20 import numpy as N
21 from numpy. linalg import singular_value_decomposition
22

23 import Scientific
24 import Scientific .IO
25 import Scientific .IO. ArrayIO
26 import Scientific . Statistics
27 import Scientific . Statistics . Histogram
28

29 import math
30

31 import pylab
32 import datetime
33 from scipy. optimize import leastsq
34

35 """
36 This package wants to ensure that all the operations returns a numeric .

array
37 """
38

39 read_array = Scientific .IO. ArrayIO . readFloatArray
40 write_array = Scientific .IO. ArrayIO . writeArray
41 mean = Scientific . Statistics .mean
42 variance = Scientific . Statistics . variance
43 std = Scientific . Statistics . standardDeviation
44 median = Scientific . Statistics . median
45 skewness = Scientific . Statistics . skewness
46 kurtosis = Scientific . Statistics . kurtosis
47 correlation = Scientific . Statistics . correlation
48 max = pylab.max
49 min = pylab.min
50 fft = N.fft
51

52

53 def date2array (dates):
54 return N.array ([ pylab. date2num ( datetime .date (* day)) for day in

dates ])
55

56

57 def get_date_value (dts):
58 dates , values = [], []
59 for day , value in dts:
60 dates. append (pylab. date2num ( datetime .date (* day)))
61 values . append (value)
62

63 return N.array(dates), N.array( values )
64

65

66 def diff(ts):
67 " Returns the discrete derivative ."
68 return N.array(ts [1:] - ts [: -1])
69

70
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71 def returns (ts):
72 " Returns the returns , difference of log"
73 return diff(N.log(ts))
74

75

76 def poincare (ts):
77 " Returns the pair (x[t-1],x[t]) for each t in the time series x."
78 return N.array(zip(ts [1:] , ts [: -1]))
79

80

81 # This is the same as abs(fft(self))
82 def power(ts):
83 " Returns the square of the module ."
84 return (N. conjugate (ts)*ts).real
85

86

87 def svd(ts , n= 25):
88 " Returns the result of the singular value decomposition ."
89 comp = [ ts[i+j] for j in range(len(self)-n) for i in range(n)]
90 comp = N.array(comp)
91 comp = N. reshape (comp , (-1, n))
92 return singular_value_decomposition (comp)
93

94

95 def dispersion (ts):
96 " Returns the pair (x[t],x[t]-x[t -1]) for each t in the times series

x."
97 return N.array(zip(ts [1:] , diff(ts)))
98

99

100 def wrap(ts):
101 " Returns the pair (t,x[t]) for each t in the time series x."
102 return N.array(zip(range(len(ts)), ts))
103

104

105 def histogram (ts , n):
106 " Returns the histogram with n beans for the time series ts."
107 return N.array(pylab.hist(ts , n))
108

109

110 def running_avg_std (val , win = 100):
111 # Evaluate mean and standard deviation for a window of lenght win
112 mean = []
113 std = []
114 vque = []
115 sum = 0
116 sum2 = 0
117

118 for x in val [: win ]:
119 sum += x
120 sum2 += x*x
121 vque. insert (0,x)
122

123 for x in val[win :]:
124 prev = vque.pop ()
125 vque. insert (0,x)
126 sum += x - prev
127 sum2 += x*x - prev*prev
128 mean. append (sum / win)
129 std. append (math.sqrt(sum2/win - sum*sum /( win*win)))
130

131 return N.array(zip(val[win /2:] , mean ,std))
132

133

134 def trend_cycle (table):
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135 ref_cycle = []
136

137 prev_val = table [0][1] # previous value
138 cum_dif = prev_val # cumulative difference
139 cycle_len = 1 #cycle lenght
140

141 for val , dif in table [1:]:
142 #if the trend changes then save and reset counters
143 if prev_val * dif < 0:
144 if cum_dif > 0: sign = 1
145 elif cum_dif < 0: sign = -1
146 else: sign = 0
147 ref_cycle . append ((val , cum_dif , cycle_len * sign))
148 cycle_len = 0
149 cum_dif = 0.
150

151 cum_dif += dif
152 cycle_len += 1
153 prev_val = dif
154

155 return N.array( ref_cycle )
156

157

158 def cond_variance (vec_diff , n_bins = 20):
159 diff = N.sort(vec_diff , 0)
160 x_min = diff [0][0]
161 x_max = diff [ -1][0]
162 delta_bin = ( x_max - x_min )/ n_bins
163

164 bin = 1
165 num = 1
166 sum = diff [0][1]**2
167

168 var = []
169 for x,y in diff [1:]:
170 if x > x_min + bin * delta_bin :
171 #print bin , num , sum/num
172 var. append (sum/num)
173 bin += 1
174 num = 1
175 sum = y*y
176 else:
177 num += 1
178 sum += y*y
179

180 # Note xrange is a built -in function , probably a good candidate
181 # for this calculation would be the avereage point of the interval
182 xrange =[ x_min + (i + 0.5)* delta_bin for i in range( n_bins )]
183

184 var. append (sum/num)
185 #print bin , num , sum/num
186 return N.array(zip(xrange ,var))
187

188

189 def basic_statistics (vec):
190 """ Return some basic statistics for a given series :
191 min , max , mean , median , std , skewness , kurtosis ."""
192 return [ measure (vec) for measure in (min , max , mean , median , std ,

skewness , kurtosis )]
193

194

195 def pprint (tseries , dformat = "%d%.2d%.2d", vformat = "%.2 lf", ofs= sys.
stdout ):

196 oformat = "%s\t%s" % (dformat , vformat )
197 for day ,value in tseries :
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198 values = day + (value ,)
199 print >> ofs , oformat % values
200

201

202 def gnuplot_convert_matrix (ifs , ofs , initial_value , step , delimiter =’\
t’):

203 for line in ifs:
204 if not line:
205 break
206

207 if line [0] == ’#’:
208 continue
209

210 val= line [: -1]. split( delimiter )
211

212 date = val [0]
213 scale = initial_value
214 for i in val [1:]:
215 print >> ofs , "%s\t%d\t%s" % (date , scale , i)
216 scale += step
217

218 print >> ofs
219

220

221 def fit(x, y, residuals = False):
222 p0 = 0., 0.
223 plsq = leastsq ( lambda p,u,v: u - p[0]*v -p[1], p0 , args =(y,x),

full_output = 1)
224

225 p = plsq [0]
226 if not residuals :
227 return p
228

229 res = y - p[0]*x -p[1]
230 return plsq [:2] + (sum(res*res) ,)

For TSDFA due to the huge number of calculations involved it is necessary to use C
code to speed up results. The author used the C code from the original authors Peng et al.
[1994]. The differences between this version and the original can be summarised as:

• The code coming from Numerical Recipes was factored to the header file, nr.h. This
code has a license that makes it free software.

• The references to polifit routines were changed to gsl. This code has a license that
explicitly does not allow distribution. With this change the code is fully redis-
tributable.

Listing C.8: DFA: C code
1 /* file: dfa.c J. Mietus , C-K Peng , and G. Moody 8 February 2001
2 Last revised : 14 November 2001

v4.8
3 José Matos 5 May 2003

v5.0
4

5 -------------------------------------------------------------------------------

6 dfa: Detrended Fluctuation Analysis ( translated from C-K Peng ’s Fortran
code)
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7 Copyright (C) 2001 Joe Mietus , C-K Peng , and George B. Moody
8

9 This program is free software ; you can redistribute it and/or modify it
under

10 the terms of the GNU General Public License as published by the Free
Software

11 Foundation ; either version 2 of the License , or (at your option ) any
later

12 version .
13

14 This program is distributed in the hope that it will be useful , but
WITHOUT ANY

15 WARRANTY ; without even the implied warranty of MERCHANTABILITY or
FITNESS FOR A

16 PARTICULAR PURPOSE . See the GNU General Public License for more
details .

17

18 You should have received a copy of the GNU General Public License along
with

19 this program ; if not , write to the Free Software Foundation , Inc., 59
Temple

20 Place - Suite 330, Boston , MA 02111 -1307 , USA.
21

22 You may contact the authors by e-mail ( peng@physionet .org) or postal
mail

23 (Beth Israel Deaconess Medical Center , Room KS -B26 , 330 Brookline Ave.,
Boston ,

24 MA 02215 USA). For updates to this software , please visit PhysioNet
25 (http :// www. physionet .org /).
26 _______________________________________________________________________________

27

28 This method was first proposed in:
29 Peng C-K, Buldyrev SV , Havlin S, Simons M, Stanley HE , Goldberger AL.

Mosaic
30 organization of DNA nucleotides . Phys Rev E 1994;49:1685 -1689. [

Available
31 on -line at http :// prola.aps.org/ abstract /PRE/v49/i2/ p1685_1 ]
32

33 A detailed description of the algorithm and its application to
physiologic

34 signals can be found in:
35 Peng C-K, Havlin S, Stanley HE , Goldberger AL. Quantification of

scaling
36 exponents and crossover phenomena in nonstationary heartbeat time

series .
37 Chaos 1995;5:82 -87. [ Abstract online at http :// www.ncbi.nlm.nih.gov/

entrez /-
38 query.fcgi?cmd= Retrieve &db= PubMed & list_uids =11538314& dopt= Abstract ]
39

40 If you use this program in support of published research , please
include a

41 citation of at least one of the two references above , as well as the
standard

42 citation for PhysioNet :
43 Goldberger AL , Amaral LAN , Glass L, Hausdorff JM , Ivanov PCh , Mark RG

,
44 Mietus JE , Moody GB , Peng CK , Stanley HE. PhysioBank , PhysioToolkit ,

and
45 Physionet : Components of a New Research Resource for Complex

Physiologic
46 Signals . Circulation 101(23) :e215 -e220 [ Circulation Electronic Pages;
47 http :// circ. ahajournals .org/cgi/ content /full /101/23/ e215 ]; 2000 (June

13).
48 */
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49

50 # include "nr.h"
51 # include <gsl/ gsl_fit .h>
52 # include <stdlib .h>
53 # include <stdio.h>
54 # include <math.h>
55

56 /* Function prototypes . */
57 double * input(int *npts);
58 int* rscale (int minbox , int maxbox , double boxratio , int *rs , int *

rslen);
59 void dfa( double *seq , int npts , int sw , int minbox , int maxbox );
60 void help(char *pname);
61

62 int main(int argc , char ** argv)
63 {
64 int sw = 0;
65 int minbox = 0L, maxbox = 0L, npts;
66 int win_len = 50;
67

68 /* Read and interpret the command line. */
69 char * pname = argv [0]; /* this program ’s name (for use in error

messages ) */
70 for (int i = 1; i < argc && *argv[i] == ’-’; i++) {
71 switch (argv[i][1]) {
72 case ’l’: /* set minbox (the minimum box size) */
73 minbox = atoi(argv [++i]); break;
74 case ’u’: /* set maxbox (the maximum box size) */
75 maxbox = atoi(argv [++i]); break;
76 case ’w’: /* set window size */
77 win_len = atoi(argv [++i]); break;
78 case ’s’: /* enable sliding window mode */
79 sw = 1; break;
80 case ’h’: /* print usage information and quit */
81 default :
82 help(pname);
83 exit (1);
84 }
85 }
86

87 double *seq = input( &npts); /* input data buffer */
88

89 /* Set minimum and maximum box sizes. */
90 if ( minbox < 4) minbox = 4;
91 if ( maxbox == 0 || maxbox > npts /4) maxbox = npts /4;
92 if ( minbox > maxbox ) {
93 printf (" number of points = %d\ nminbox = %d\ nmaxbox = %d\n",

npts , minbox , maxbox );
94 error(" Invalid ranges : minimum box larger than maximum box");
95 }
96

97 /* Measure the fluctuations of the detrended input data at each box
size

98 using the DFA algorithm ; fill mse [] with these results . */
99 for (int i=0; i < npts - win_len ; ++i)

100 dfa(seq + i, win_len , sw , minbox , win_len /4);
101

102 // dfa(seq , npts , sw , minbox , maxbox );
103

104 free(seq); /* allocated by input () */
105 exit (0);
106 }
107

108 /* Read input data , allocating and filling an array whose pointer is
returned .
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109 The number of points read is passed in n_pts.
110

111 This function allows the input buffer to grow as large as necessary ,
up to

112 the available memory ( assuming that a int is large enough to address
113 any memory location ). */
114 double *input(int *n_pts)
115 {
116 double *seq = 0;
117 int maxdat = 0L;
118 double y;
119 int npts = 0L;
120

121 while (scanf("%lf", &y) == 1) {
122 if (npts >= maxdat ) {
123 double *s;
124 maxdat += 50000; /* allow the input buffer to grow (the
125 increment is arbitrary ) */
126 if ((s = realloc (seq , maxdat * sizeof ( double ))) == NULL) {
127 fprintf (stderr ,
128 "dfa: insufficient memory , truncating input at

row %d\n",
129 npts);
130 break;
131 }
132 seq = s;
133 }
134 seq[npts ++] = y;
135 }
136

137 if (npts < 1) error("no data read");
138 *n_pts = npts;
139 return seq;
140 }
141

142 /* rscale () allocates and fills rs[], the array of box sizes used by
dfa ()

143 below. The box sizes range from ( exactly ) minbox to ( approximately )
maxbox ,

144 and are arranged in a geometric series such that the ratio between
145 consecutive box sizes is ( approximately ) boxratio . The return value

is
146 the number of box sizes in rs [].
147 */
148 int* rscale (int minbox , int maxbox , double boxratio , int *nr , int *

rslen)
149 {
150 int ir , n;
151 int rw;
152 int *rs;
153

154 /* Determine how many scales are needed . */
155 *rslen = log10( maxbox / minbox ) / log10( boxratio ) + 1;
156 rs = ivector (0, *rslen -1);
157 for (ir = 0, n = 1, rs [0] = minbox ; n < *rslen && rs[n -1] < maxbox ;

ir ++)
158 if ((rw = minbox * pow(boxratio , ir) + 0.5) > rs[n -1])
159 rs[n++] = rw;
160 if (rs[--n] > maxbox ) --n;
161 *nr = n;
162 return rs;
163 }
164

165 void fit_linear ( double *xv , double *yv , int nr , double *c0 , double *c1
, double *cov00 , double *cov01 , double *cov11 , double * chisq)
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166 {
167 double s1 = 0 ,sx = 0, sxy = 0,sxx = 0,sy = 0, syy = 0;
168

169 for(int i=0;i < nr; ++i) {
170 s1 += 1;
171 sx += xv[i];
172 sxx += xv[i]* xv[i];
173 sxy += xv[i]* yv[i];
174 syy += yv[i]* yv[i];
175 sy += yv[i];
176 }
177

178 double delta = sxx * s1 - sx * sx;
179 *c1 = (sxy * s1 - sx * sy ) / delta;
180 *c0 = (sxx * sy - sx * sxy) / delta;
181 *cov00 = (sxx - sx * sx / s1) / s1;
182 *cov01 = (sxy - sx * sy / s1) / s1;
183 *cov11 = (syy - sy * sy / s1) / s1;
184

185 *chisq = 0.0;
186 for(int i=0;i < nr; ++i) {
187 double d = yv[i] - *c1 * xv[i] - *c0;
188 *chisq += d*d;
189 }
190

191 }
192

193 /* Detrended fluctuation analysis
194 seq: input data array
195 npts: number of input points
196 rs: array of box sizes ( uniformly distributed on log scale)
197 nr: number of entries in rs[] and mse []
198 sw: mode (0: non - overlapping windows , 1: sliding window )
199 This function returns the mean squared fluctuations in mse [].
200 */
201 void dfa( double *seq , int npts , int sw ,int minbox , int maxbox )
202 {
203 int boxsize , inc , j;
204 int nr; /* number of box sizes */
205 double stat;
206

207 int *rs = 0; /* box size array; allocated and filled by
rscale () */

208 int rslen; /* length of rs[] */
209 double c0 , c1 , cov00 , cov01 , cov11 , chisq;
210

211 /* Allocate and fill the box size array rs []. rscale ’s third
argument

212 specifies that the ratio between successive box sizes is 2^(1/8)
. */

213 rs = rscale (minbox , maxbox , pow (2.0 , 1.0/8.0) , &nr , &rslen);
214

215 /* Allocate memory for dfa () and the functions it calls. */
216 double *mse = vector (0, nr -1); /* fluctuation array; */
217

218 double *x = vector (0, npts -1);
219 for(int i=0; i< npts; ++i)
220 x[i] = i;
221

222 for (int i = 0; i < nr; i++) {
223 boxsize = rs[i];
224 // printf (" boxsize [%i]=%i\n",i, boxsize );
225 if (sw) { inc = 1; stat = (int)(npts - boxsize + 1) * boxsize ;

}
226 else { inc = boxsize ; stat = (int)(npts / boxsize ) * boxsize ; }
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227 for (mse[i] = 0.0, j = 0; j <= npts - boxsize ; j += inc) {
228 gsl_fit_linear (x+j, 1, seq+j, 1, boxsize ,
229 &c0 , &c1 , &cov00 , &cov01 , &cov11 ,
230 &chisq);
231 mse[i] += chisq;
232 // printf ("%i\t%g\n",i,chisq);
233 // mse[i] += polyfit (x, seq + j, boxsize , nfit);
234 }
235 mse[i] /= stat;
236 }
237

238 double *xv = vector (0,nr -1);
239 double *yv = vector (0,nr -1);
240

241 /* Output the results . */
242 for (int i = 0; i < nr; i++) {
243 xv[i] = log10 (( double )rs[i]);
244 yv[i] = log10(mse[i]) /2.0;
245 // printf ("%g\t%g\n",xv[i],yv[i]);
246 }
247 fit_linear (xv , yv , nr , &c0 , &c1 , &cov00 , &cov01 , &cov11 , &chisq);
248 printf ("%g\t%g\n", c1 , cov01/sqrt(cov00*cov11));
249

250 // gsl_fit_linear (xv , 1, yv , 1, nr , &c0 , &c1 , &cov00 , &cov01 , &
cov11 , &chisq);

251 // printf ("% lf\t%lf\t%lf\t%lf\t%lf\t%g\t%g\n",c1 ,c0 , cov00 , cov01 ,
cov11 , cov01/sqrt(cov00*cov11),chisq );

252 /* Release allocated memory . */
253 free_vector (x, 0, npts -1);
254 free_ivector (rs , 0, rslen -1); /* allocated by rscale () */
255 free_vector (mse , 0, nr -1);
256 free_vector (xv ,0,nr -1);
257 free_vector (yv ,0,nr -1);
258 }
259

260 static char * help_strings [] = {
261 "usage: %s [ OPTIONS ...]\n",
262 "where OPTIONS may include :",
263 " -d K detrend using a polynomial of degree K",
264 " ( default : K=1 -- linear detrending )",
265 " -h print this usage summary ",
266 " -l MINBOX smallest box width ( default : 2K+2)",
267 " -s sliding window DFA",
268 " -u MAXBOX largest box width ( default : NPTS /4)",
269 " -w WINSIZE window size"
270 "The standard input should contain one column of data in text format ."

,
271 "The standard output is two columns : log(n) and log(F) [base 10

logarithms ],",
272 "where n is the box size and F is the root mean square fluctuation .",
273 NULL
274 };
275

276 void help(char *pname)
277 {
278 int i;
279

280 (void) fprintf (stderr , help_strings [0], pname);
281 for (i = 1; help_strings [i] != NULL; i++)
282 (void) fprintf (stderr , "%s\n", help_strings [i]);
283 }
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"Science is what we understand well enough to explain to a computer. Art
is everything else we do." - Donald Knuth

This Appendix reflects the available software existing for the study of mathematical tools
used in this work. As explained in Chapter 3 the author focuses only on free software.
Even with this restriction this is a huge list with high quality software.

The different areas have been splitted in Section and each Subsection represents the
main language in which the tools are implemented and are intended to be used. These
methods are discussed in detail in Chapter 2.

D.1. Fourier transforms

fftw http://www.fftw.org is a C library for computing the discrete Fourier transform
(DFT) in one or more dimensions, of arbitrary input size, and of both real and
complex data (as well as of even/odd data, i.e. the discrete cosine/sine transforms
or DCT/DST).

D.2. Wavelets

Reflecting wavelets popularity, there is a broad range of free software available for dealing
with wavelet analysis.

D.2.1. R

waveslim http://www.image.ucar.edu/staff/whitcher/ is a basic wavelet routines for
time series (1D), image (2D) and array (3D) analysis.

wavetresh http://cran.r-project.org/contrib/main/Descriptions/wavethresh.html

is a software to perform 1-d and 2-d wavelet statistics and transforms.

wavelets http://www.atmos.washington.edu/~ealdrich/wavelets/ is a package that
contains functions for computing and plotting discrete wavelet transforms (DWT)
and maximal overlap discrete wavelet transforms (MODWT), as well as their in-
verses. Additionally, it contains functionality for computing and plotting wavelet
transform filters that are used in the above decompositions as well as multiresolu-
tion analyses.
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D.2.2. python

PyWavelets http://www.pybytes.com/pywavelets/ is a Python module for calculating
Simple and Inverse Discrete Wavelet Transform, as well as Wavelet Packets and
Stationary Wavelet Transform.

wavelets http://wavelets.scipy.org is a promising package from the same creators of
scipy and numpy.

D.2.3. C++

WAILI http://www.cs.kuleuven.ac.be/~wavelets/ is a wavelet transform library.

MultiWavePack http://python.rice.edu/MultiWavePack.html is being developed to
implement particular types of wavelet calculations. The eventual goal of this C++
code will be to automate many of the tasks involved in using wavelets for the solution
of ordinary and partial differential equations. Orthogonal and bi-orthogonal cases
of single wavelet and multiwavelet families are allowed, requiring little more than
inclusion of the recursion coefficients in a database text file (a few examples are
included already). Only a modest amount of functionality is currently offered, as
reflected by pre-release numbering.

D.2.4. C

LastWave http://www.cmap.polytechnique.fr/~bacry/LastWave/ is a signal process-
ing oriented command language.

D.3. Fractional Brownian motion

D.3.1. R

fSeries http://cran.at.r-project.org/src/contrib/Descriptions/fSeries.html is
an environment for teaching "Financial Engineering" and "Computational Finance"
Würtz [2004]. This R package comes with 1309 R functions.

D.3.2. C

dfa http://www.physionet.org/physiotools/dfa/ is the software from the same au-
thors of [Peng et al., 1994] method and is used to evaluate the Hurst exponent using
DFA.
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D.4. Stable distributions

D.4. Stable distributions

D.4.1. R

stable http://popgen.unimaas.nl/~jlindsey/rcode.html is James Lindsey’s [Lind-
sey, 2004, Lambert and Lindsey, 1999] R package for stable distribution analysis.

D.4.2. Python

PyLevy http://www.logarithmic.net/pfh/pylevy is a package for calculation of Lévy
stable distributions (probability density function and cumulative density function)
and for fitting these distributions to data.

It operates by interpolating values from a table, as direct computation of these
distributions requires a lengthy numerical integration. This interpolation scheme
allows fast fitting of Levy stable distributions to data using the Maximum Likelihood
technique.

Does not support α values less than 0.5.
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